Change, Redirection and Development

Conference for the 50th Anniversary of the Faculty of Business and Economics of University of Pécs 5-6th November 2020

The Sectoral Effects of Sudden Stops An Empirical Investigation

István Kónya ^{a, b} – Miklós Váry ^b ^a CERS IE, ^b UP FBE

UNIVERSITY OF PÉCS Faculty of Business and Economics

Motivation

- The global financial crisis and the current COVID crisis highlighted the importance of flexible responses to large economic shocks
- Typically, the adjustment process is facilitated by sectoral reallocation
- There is significant heterogeneity among countries in how they react to such shocks, but also in their industrial composition
- Our question: are these two related?
- In particular, we look at the impact of large open economy shocks sudden stops – on the performance of the main production sectors of economies

What we do

- We identify sudden stop episodes across many countries and time periods
- We look for patterns at the sectoral level using an event-study methodology and panel regressions
 - We compare sectoral value-added levels and growth before and after a sudden stop episode starts
- Our results indicate that
 - Construction is the sector most affected by sudden stops, both before and after
 - Industry and manufacturing are important drivers of the recovery process
 - There is a prolonged reallocation away from service sectors and towards the production of goods

Literature

- Financial liberalization and the trade-off between efficiency and resilience (Tornell et al., 2003; Rancière et al., 2008)
- Predicting the probability of a sudden stop (Calvo et al., 2004; Cavallo Frankel, 2008; Forbes – Warnock, 2012; Benigno et al., 2015; Kalantzis, 2015)
- The effects of sudden stops
 - Significant decline in real GDP growth (Calvo Reinhart, 2000; Calvo et al., 2006; Edwards, 2007; Eichengreen Gupta, 2018)
 - Significant depreciation of the domestic currency (Cavallo et al., 2015; Eichengreen Gupta, 2018)
 - The role of DLD, openness to trade and the exchange rate regime (Guidotti et al., 2004), difference between gross and net inflows (Rothenberg Warnock, 2011; Cavallo et al., 2015)
- The sectoral effects of sudden stops
 - Craighead Hineline (2015): current account reversals, smaller sample, growth effects only
 - Cowan Raddatz (2013): manufacturing sectors only

The sudden stop algorithm

- We define a sudden stop as a large and unexpected fall in net capital inflows (Calvo et al., 2004)
- We use quarterly IMF data on the financial account (analytical presentation)
- Large drops in the financial account are defined relative to a rolling average over the previous five years
- A sudden stop occurs when the change in net FA drops at least by two standard deviations
- We find 331 sudden stop episodes overall, but sectoral data is much more limited

Detecting sudden stops – Hungary

Industrial composition

- The main constraint is collecting quarterly data on real gross value added (RGVA) at the sectoral level
- We found comparable data at the Eurostat and OECD Stats websites
- These yield RGVA data for 10+1 sectors:
 - A: Agriculture, forestry and fishing
 - B-E: Industry (C: Manufacturing)
 - F: Construction
 - G-I: Wholesale and retail trade, transport, accommodation and food service activities
 - J: Information and communication
 - K: Financial and insurance activities
 - L: Real estate activities
 - M-N: Professional, scientific and technical activities; administrative and support service activities
 - O-Q: Public administration, defence, education, human health and social work activities
 - R-U: Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies

A sudden stop event

- We follow an event study methodology, where we compare RGVA before and after a sudden stop starts
- The event window is 21 quarters, 10 before and 10 after the onset of a sudden stop
- We normalize the level of RGVA for each event to 100% at the start of a sudden stop
- For each of the 83 suddens tops in the sample, we create a time series with 21 observations and use the resulting panel data for estimation
- We also create a "synthetic" sudden stop episode by averaging across episodes, yielding a single time series with 21 observations

Sudden stops: synthetic events at the sectoral level

Regressions

- We run two sets of regressions, for each sector separately
- First, we use the synthetic episodes

$$y_t^j = \alpha_0^j + \alpha_1^j s_t + \alpha_2^j t + \alpha_3^j s_t t + \epsilon_t^j$$

• Second, we run similar panel regressions

$$y_{i,t}^{j} = \beta_{0}^{j} + \beta_{1}^{j} s_{i,t} + \beta_{2}^{j} t + \beta_{3}^{j} s_{i,t} t + \eta_{i}^{j} + \epsilon_{i,t}^{j}$$

y^j: log of sectoral RGVA, s_t: positive after a sudden stop (t ≥ 0), t: time trend, η^j_i: episode fixed effect

Time series regressions I

SECTORS	Α	B-E	C	F	G-I	J
Trend	0.173**	0.257***	0.324***	0.570***	0.598***	1.569***
	(0.0753)	(0.0392)	(0.0475)	(0.0899)	(0.0535)	(0.0419)
Episode	-0.506	-1.736***	-2.187***	-3.161***	-1.982***	-1.468***
	(0.606)	(0.315)	(0.382)	(0.723)	(0.431)	(0.338)
Episode x Trend	0.293***	0.445***	0.497***	-0.441***	0.0476	-0.320***
	(0.0996)	(0.0518)	(0.0628)	(0.119)	(0.0708)	(0.0555)
Constant	460.4***	461.5***	462.0***	462.1***	462.1***	461.7***
	(0.467)	(0.243)	(0.295)	(0.558)	(0.332)	(0.26)
Observations	21	21	21	21	21	21
<u>R</u> -squared	0.893	0.981	0.98	0.73	0.979	0.998

Time series regressions II

SECTORS	К	L	M-N	0-Q	R-U
Trend	1.129***	0.632***	1.168***	0.496***	0.577***
	(0.0662)	(0.0413	(0.0603)	(0.0221)	(0.0505)
Episode	-0.282	-0.666*	-2.303***	-0.411**	-1.042**
	(0.533)	(0.332)	(0.486)	(0.177)	(0.406)
Episode x Trend	-0.503***	-0.0786	-0.335***	-0.123***	-0.293***
	(0.0876)	(0.0546)	(0.0798)	(0.0292)	(0.0668)
Constant	461.2***	461.3***	462.5***	461.2***	461.3***
	(0.411)	(0.256)	(0.374)	(0.137)	(0.313)
Observations	21	21	21	21	21
R-squared	0.989	0.99	0.991	0.995	0.966

Panel regressions I

SECTORS	Α	B-E	C	F	G-I	J
Trend	0.245**	0.336***	0.423***	0.721***	0.623***	1.638***
	(0.102)	(0.0896)	(0.101)	(0.138)	(0.0681)	(0.0957)
Episode	-0.464	-1.760**	-2.249***	-3.116***	-1.933***	-1.417*
	(0.822)	(0.721)	(0.814)	(1.109)	(0.548)	(0.770)
Episode x Trend	0.161	0.315***	0.330**	-0.828***	-0.0161	-0.478***
	(0.135)	(0.119)	(0.134)	(0.182)	(0.0901)	(0.127)
Constant	460.1***	461.5***	461.9***	462.1***	462.1 ***	461.7***
	(0.634)	(0.556)	(0.628)	(0.855)	(0.423)	(0.594)
Episode FE	YES	YES	YES	YES	YES	YES
Observations	1,743	1,743	1,743	1,743	1,743	1,743
R-squared	0.045	0.094	0.099	0.017	0.221	0.511
Number of id	83	83	83	83	83	83

Panel regressions II

SECTORS	К	L	M-N	0-Q	R-U
Trend	1.242*** (0.124)	0.647*** (0.0696)	1.235*** (0.106)	0.502*** (0.0398)	0.763*** (0.203)
Episode	-0.551 (0.995)	-0.571 (0.560)	-2.419*** (0.854)	-0.382 (0.320)	-2.517 (1.637)
Episode x Trend	-0.756*** (0.164)	-0.124 (0.0921)	-0.499*** (0.140)	-0.143*** (0.0526)	-0.549** (0.269)
Constant	461.2*** (0.768)	461.2*** (0.432)	462.6*** (0.659)	461.1*** (0.247)	462.8*** (1.262)
Episode FE	YES	YES	YES	YES	YES
Observations	1,701	1,743	1,701	1,743	1,638
R-squared	0.212	0.257	0.259	0.369	0.017
Number of id	81	83	81	83	78

Panel estimation with time dummies

Summary of the effects

	Growth effect					
		Positive	Not significant	Negative		
	Positive	-	-	-		
Level effect	Not significant	-	A, L	K, O-Q, R-U		
	Negative	B-E, C	G-I	F, J, M-N		

