GMR-Hungary:
A Complex Macro-regional Model for the Analysis of Development Policy Impacts on the Hungarian Economy
Working Paper
October 2007

Author

Department of Economics and Regional Studies
Faculty of Business and Economics
University of Pécs

GMR-HUNGARY:

A COMPLEX MACRO-REGIONAL MODEL FOR THE ANALYSIS OF DEVELOPMENT POLICY IMPACTS ON THE HUNGARIAN ECONOMY

Attila Varga

WP 2007/4

Editorial Board

Barancsuk, János
Buday-Sántha, Attila
Szabó, Zoltán
Varga, Attila

TABLE OF CONTENTS

1. Introduction 2
2. A key issue in development policy analysis: Appropriately modeling technological change and macroeconomic performance 5
3. Regional impacts of CSF development policy interventions: The TFP sub-model 18
4. Modeling dynamic agglomeration effects and the resulting cumulative spatial processes: The Spatial Computable General Equilibrium (SCGE) sub-model 27
5. Macroeconomic impacts of CSF development policy interventions: The macroeconomic sub-model 35
6. Integrating regional and macro levels in the complex model: Structure, mechanisms of CSF impacts and model properties 57
7. Economic impacts of CSF development policy interventions on the Hungarian economy: A scenario analysis 72
8. Summary and conclusions 83
References 85
Appendices 90

1. Introduction

The National Development Office of the Hungarian government contracted the international consortium coordinated by the Center for Research in Economic Policy for the development of a complex macro-regional economic model. This model system will be used for ex-ante evaluations of different policy scenarios according to the following specifications:

1. The model is the extension of EcoRET - a macroeconomic model used for ex-ante impact analyses during the design of the $1^{\text {st }}$ National Development Plan for Hungary into the regional and the sectoral directions. For the regional extension EcoRET will be integrated with RAEM-Light - a spatial computable general equilibrium (SCGE) model that have already been used for policy evaluations in the Netherlands, Japan and South Korea.
2. The sectoral detail of the complex model is as follows: industry, agriculture, services and government.
3. The spatial detail of the model:

- for the macroeconomic sub-model: national level
- for the regional TFP and SCGE sub-models: Hungarian counties (NUTS 3 level)

4. Data need:

- for the macroeconomic sub-model: time series data from 1990 (for several variables only from 1995);
- for the TFP sub-model: panel space-time data for 1997-2003
- for the SCGE sub-model: cross sectional data for 2003 (short run) and time series data for selected variables (long run)

5. The model system is supported by a user-friendly Windows interface that makes policy simulations easy to perform without being familiar with the softwares (Eviews, Excel) applied in executing ex-ante evaluations.

The complex model exhibits the following most important unique features as compared to more traditional approaches in policy modeling:

1. The model has a strong supply side orientation besides having a well developed demand side block.
2. Modeling technological change is at the heart of the supply side block. The reason for this is that most of the development policy instruments (R\&D support, infrastructure investment, education/tranining promotion) aim towards improving firms' productivity.
3. The effect of static and dynamic agglomeration externalities in technological change are directly modeled in the complex system. This feature is perhaps the one that distinguishes our approach from others the most. As a result our model is capable of estimating the likely effects of policy scenarios with different spatial distribution of development support both in the short run as well as in the longer run.
4. The complex model provides rich information for policy analysis on the likely effects of interventions not only at the macro but also at the regional levels. This information is communicated via tables, figures and maps.
5. Finally, despite its highly complex structure the system is "packaged" in a user friendly Windows interface that makes policy simulations extremely easy even for those who are not familiar with any of the softwares running in the background.

Since the most distinguishing feature of our modeling approach is that it directly incorporates the geographic dimension of development policy interventions we call this model Geographic Macro and Regional model for Hungary and refer to it as the GMR-Hungary model.

The Consortium that has built this model consists of the following institutes:

- Center for Research in Economic Policy (GKK, University of Pécs, Faculty of Business and Economics) - project coordination, TFP sub-model-building, planning, integrating and executing the complex model system. (Attila Varga, Péter Járosi, Zsolt Uderszky)
- Center for Applied Economic Research Münster (CAWM, University of Münster) macroeconomic sub-model building, planning the complex model system. (Hans Joachim Schalk, Onno Hoffmeister)
- TNO (Delft) - provision of RAEM-Light for adaptation it to Hungarian circumstances, expert help during calculations of transportation cost matrices, consultancy during the adaptation of RAEM-Light (Lory Tavasszy)
- TRANSMAN Ltd. - calculation of transportation cost matrices (János Monigl, Zoltán Újhelyi)
- Department of Education Management (University of Pécs) - designing and developing Windows interface (Balázs Marján)

Scientific advisors on the project:

- Atsushi Koike (Tottori University, Japan) - adaptation of RAEM-Light to Hungarian circumstances (developing RAEM-Light Hungary), expert help during the integration of RAEM-Light into the complex model system
- Tamás Révész (Budapest Corvinus University) - consultancy during the integration of RAEM-Light Hungary into the complex model system.

This report provides the theoretical background for the complex model, a detailed description of the whole system and also an application to assess the likely economic impacts of the Hungarian National Development Plan II (2007-2013).

2. A key issue in development policy analysis: Appropriately modeling technological change and macroeconomic performance

2.1 Development policy and technological change: An empirical modeling framework

Beginning in the early 1980's first in the USA then in Europe and in other parts of the Word new types of development policy instruments emerged both at central and regional government levels. These policies are commonly called "technology-based" (or "knowledgebased") economic development policies. The common aim of these interventions is to improve firm's technological opportunities (Isserman 1994, Cohen, Florida and Goe 1994, Coburn 1995, Reamer, Icerman and Youtie 2003). These policies are clearly related to the fact first proven by Robert Solow (1957) that technological change is the most important component of long-run economic growth. The new set of policies is also influenced by the experience of some highly successful regions (such as the Silicon Valley and Route 168 in the USA, or the Cambridge Phenomenon in the UK) where indigenously developed technologies constituted the principal drive of economic growth (Varga 1998).

Instruments promoting technology-based development can be classified into two sets. Interventions in the first class directly promote firm's technological potential by start-up and investment supports, tax credits, low interest rate loans or venture capital. The second set of instruments affects firms indirectly by supporting the technological (or knowledge) environment by means of R\&D promotion both at universities and private firms, human capital improvement, support of public-private interactions in innovation (e.g., universityindustry technology centers, government-industry consortia, university-industry research collaboration) or by financing physical infrastructure building ${ }^{1}$.

Theoretical foundation of the two sets of policies has been developed in the so-called "innovation systems" literature (Lundval 1992, Nelson 1993, Braczyk, Cooke and Heidenreich). According to this approach innovation is an outcome of a systemic process where interactions among the actors lead to the change of technologies. Actors of the system are innovating firms, their suppliers and buyers, private and public research laboratories, universities, business services active in innovation (such as software, design, marketing or

[^0]patent law firms) and different levels of governments. Since innovation is not any more a result of lonely inventors' independent efforts (such as of the Edison-type inventors one hundred years ago) the intensity of interactions among the actors in a system is crucial. Interactions can either be formally or informally organized that is they might be regulated by market forces (and as such these interactions are governed by written contracts) or they could follow the web of personal relations (i.e., interactions are coordinated by the principle of reciprocity). Also, some of the interactions result in knowledge spillovers where the cost to obtain knowledge is zero or less than the value of that knowledge. Innovation systems are classified by industrial sectors (e.g., biotechnology, electronics or software innovation systems) and by spatial units (global, national, regional or local systems of innovation).

The geographical dimension can become crucial in technological change and economic growth for three main reasons. First, because the role of space might be essential in accessing knowledge, second, since agglomeration can be determinant in the accumulation of technological knowledge and third, because of the cumulative growth mechanisms these agglomeration economies initiate.

Spatial pattern of knowledge-related interactions has become a central research issue in the last decade. A series of papers (e.g., Jaffe, Trajtenberg and Henderson 1993, Audretsch and Feldman 1996, Anselin, Varga and Acs 1997, Varga 2000, Keller 2002) demonstrates that a significant fraction of knowledge flows is bounded spatially. A specific characteristic of knowledge communication explains this observation. The effectiveness of knowledge transmission in space seems to be directly related to the degree of codification. While codified knowledge can easily be transported over large distances in written forms (e.g., in scientific papers, patent documentations) transmission of tacit knowledge (non-codified, practical knowledge essential in innovation) relies on more complex, non-written types of communication that require personal interactions. Thus, access to this knowledge might be limited to those only who locate in the proximity of the knowledge source and as such spatial proximity of the actors in innovation could increase the effectiveness of technological change. Geographical proximity may also ease maintaining connections between firms, private and public research institutions and also with business services as it speeds up information flows or helps build trust and the common language of communication (Koschatzky 2000).

Agglomeration is the second geographical aspect of innovation. As an increasing body of literature (e.g., Feldman 1994, Fujita and Thisse 2002, Varga 2000) indicates there is a positive relationship between agglomeration and technological development. Various agglomeration effects such as the positive impact of increasing spatial concentration of researchers on tacit knowledge flows or the positive influence of the size of the local economy (number of related firms, producer services) on localized knowledge interactions are identified in this literature. Thus the larger the concentration of the actors of the innovation system in space the higher the opportunity of forming interactions and the higher the level of innovation. As a result of this agglomeration effect, innovation activities follow a definite tendency to concentrate in space as was demonstrated by Varga (1999) for the US and by Caniels (2000) for the EU.

If spatial proximity is essential in the change of technology and agglomeration forces decrease the costs of innovation these could possibly release a cumulative process of spatial concentration of the system. As such lover costs of innovation attracts firms into the region that further decreases the costs of innovation (at least until positive agglomeration effects dominate) and this effect is strengthened by further firm re-locations. Thus agglomeration forces are crucial in technological change and as such in economic growth explanation.

It directly follows from the above paragraphs that adequate modeling of the impact of development policies on the economy should consider the geographical aspect directly and as such, correct analysis of the effects of various development policy instruments has to be done in the spatial context. What could be the theoretical basis for such an empirical modeling?

Unfortunately it is a very complex task to integrate spatial structure into economic growth explanation. At this point no unified theory is available. As far as I understand the state of the art given the extreme complexity of the problem formal modeling might no even be possible at least with the instruments currently available. Even for empirical treatment research should use a mixture of tools and as such the suggested set of methodologies is eclectic. Consequently, it is important to emphasize that I do not aim to develop a formal theoretical model here. The aim of the proceeding paragraphs is to outline a framework that can guide empirical modeling ${ }^{2}$.

[^1]Essential elements of this "geographical growth explanation" are rooted in three separately developed recent literatures (Acs and Varga 2002): the endogenous growth theory (Romer 1990, Aghion and Howitt 1998), the systems of innovation school (Lundvall 1992, Nelson 1993), and the new economic geography literature (Krugman 1991, Fujita, Krugman and Venables 1999, Fujita and Thisse 2002). This section provides a framework to integrate elements of these three approaches in a consistent manner to guide empirical research in the field of geographical innovation and growth.

The three approaches focus on different aspects but at the same time are also complements of each other. The "new" theories of growth endogenize technological change and as such interlink technological change with macroeconomic growth. However, the way technological change is described is strongly simplistic and the economy investigated gets formulated in an a-spatial model. On the other hand, systems of innovation frameworks are very detailed with respect to the innovation process but say nothing about macroeconomic growth. However, the spatial dimension has been introduced into the framework in the recently developed "regional innovation systems" studies (e.g., Braczyk, Cooke, Hedenreich 1998, Fischer 2001).

New economic geography models investigate general equilibrium in a spatial setting. This means that they provide explanations not only for the determination of equilibrium prices, incomes and quantities in each market but also the development of the particular geographical structure of the economy. In other words, new economic geography derives economic and spatial equilibrium simultaneously (Fujita, Krugman and Venables 1999, Fujita and Thisse 2002). Spatial equilibrium arises as an outcome of the balance between centripetal forces working towards agglomeration (such as increasing returns to scale, industrial demand, localized knowledge spillovers) and centrifugal forces promoting dispersion (such as transportation costs). Until the latest developments in recent years new economic geography models did not consider the spatial aspects of economic growth. However even in the recent models explanation of technological change follows the same pattern as endogenous growth models and as such fail to reach the complexity inherent in innovation systems studies.

As was detailed above the idea behind the innovation systems approach is quite simple but as such extremely appealing. According to this in most cases innovation is a result of a collective process and this process gets shaped in a systemic manner. The effectiveness (i.e.,
productivity in terms of number of innovations) of the system is determined by both the knowledge already accumulated by the actors and the level of their interconnectedness (i.e., the intensity of knowledge flows). Ability and motivations for interactions are shaped largely by traditions, social norms, values and the countries' legal systems.

To develop an empirical modeling framework of geographical growth explanation I extend the endogenous growth model in Romer (1990) to the spatial dimension by accounting for insights from the innovation systems literature and then dynamize it by incorporating features of the new economic geography. For a bit more formal treatment I apply the generalized version of the Romer (1990) equation of macroeconomic level knowledge production developed in Jones (1995) ${ }^{3}$:

$$
\mathrm{dA}=\delta \mathrm{H}_{\mathrm{A}}^{\lambda} \mathrm{A}^{\varphi},
$$

where H_{A} stands for human capital in the research sector working on knowledge production (operationalized by the number of researchers), A is the total stock of technological knowledge available at a certain point in time whereas dA is the change in technological knowledge resulted from private efforts to invest in research and development. δ, λ and φ are parameters.

Technological change is generated by research and its extent depends on the number of researchers involved in knowledge creation $\left(\mathrm{H}_{\mathrm{A}}\right)$. However, their efficiency is directly related to the total stock of already available knowledge (A). Knowledge spillovers are central to the growth process: the higher A the larger the change in technology produce by the same number of researchers. Thus macroeconomic growth is strongly related to knowledge spillovers.

Parameters in the Romer knowledge production function play a decisive role in the effectiveness of macro level knowledge production. The same number of researchers with a similar value of A can raise the level of already existing technological knowledge with significant differences depending on the size of the parameters. First, consider $\delta(0<\delta<1)$

[^2]which is the research productivity parameter. The larger δ the more efficient H_{A} is in producing economically useful new knowledge.

The size of φ reflects the extent to which the total stock of already established knowledge impacts knowledge production. Given that A stands for the level of codified knowledge (available in books, scientific papers or patent documentations) I call φ as the parameter of codified knowledge spillovers. The size of φ reflects the portion of A that spills over and as such its value largely influences the effectiveness of research in generating new technologies.
λ is the research spillover parameter. The larger λ the stronger the impact the same number of researchers plays in technological change. In contrast to φ and δ that are determined primarily in the research sector and as such their values are exogenous to the economy λ is endogenous. Its value reflects the diffusion of (codified and tacit) knowledge accumulated by researchers. Diffusion depends first on the intensity of interactions among researchers $\left(\mathrm{H}_{\mathrm{A}}\right)$, second the quality of public research and the extent to which the private research sector is connected to it (especially to universities) by formal and informal linkages and third the development level of supporting/connected industries and business services and the integration of innovating firms into the system via links to them. The extensive innovation systems literature evidences that the same number of researchers contribute to different efficiencies depending on the development of the system. In the Romer equation this is reflected in the size of $\boldsymbol{\lambda}$.
λ is also sensitive to the spatial structure of H_{A}. Insights from the new economic geography can help understand the dynamic effects of the spatial structure of R\&D on macroeconomic growth. If spatial proximity to other research labs, universities, firms and business services matter in innovation firms are motivated to locate R\&D laboratories where actors of the system of innovation are already agglomerated in order to decrease their costs to innovate. Thus spatial concentration of the system of innovation is a source of positive externalities and as such these externalities are centrifugal forces in R\&D location. However, agglomeration effects could be negative as well. Increasing housing costs and travel time make innovation more expensive and might motivate labs to move out from the region. The actual balance between centrifugal and centripetal forces shapes the geographical structure of the system of innovation. Through determining the size of λ this also influences the rate of technological progress (dA/A) and eventually the macroeconomic growth rate (dy/y).

Equations (1) to (6) summarize the empirical modeling framework of geographical growth explanation. Equation (1) describes the relationship between innovation output (K) and regional inputs to innovation in region r : private research (RD), public/university research (URD) and the additional actors of the regional system of innovation such as business services, related/connected firms as summarized in variable Z :

$$
\begin{equation*}
\mathrm{K}_{\mathrm{r}}=\mathrm{K}\left(\mathrm{RD}_{\mathrm{r}}, \mathrm{URD}_{\mathrm{r}}, \mathrm{Z}_{\mathrm{r}}\right) \tag{2.1}
\end{equation*}
$$

A significant relationship between RD and K reflects the importance of geography in innovation and eventually in economic growth. Equations (2) to (6) actually model this relationship.

The regional effect of an increase in private $\mathrm{R} \& \mathrm{D}$ on innovation depends on research already in the region as well as on the presence of additional innovation inputs, URD and Z (agglomeration forces in innovation):

$$
\begin{equation*}
\partial \mathrm{K}_{\mathrm{r}} / \partial \mathrm{RD}_{\mathrm{r}}=\mathrm{F}\left(\mathrm{RD}_{\mathrm{r}}, \mathrm{URD}_{\mathrm{r}}, \mathrm{Z}_{\mathrm{r}}\right) . \tag{2.2}
\end{equation*}
$$

Parameters of RD, URD and Z are determined by several factors exogenous to the economy such as the willingness to cooperate in innovation, the structure of research expenditures at universities, local regulations and so on. The marginal effect of R\&D on innovation reflects agglomeration economies/diseconomies in innovation and as such affects R\&D location:

$$
\begin{equation*}
\mathrm{dRD}_{\mathrm{r}}=\mathrm{R}\left(\partial \mathrm{~K}_{\mathrm{r}} / \partial \mathrm{RD}_{\mathrm{r}}\right) \tag{2.3}
\end{equation*}
$$

Positive effects (agglomeration economies) act as centripetal forces whereas negative effects (agglomeration diseconomies) are centrifugal forces in R\&D location. The spatial distribution of $\mathrm{R} \mathrm{\& D}$ is determined by regional differences in the marginal effect of research on innovation. In spatial equilibrium $\partial \mathrm{K}_{\mathrm{r}} / \partial \mathrm{RD}_{\mathrm{r}}$ is the same for all the regions and $\mathrm{dRD}_{\mathrm{r}}=0$.

Geographical structure of research $\left(\operatorname{GSTR}\left(\mathrm{H}_{\mathrm{A}}\right)\right)$ determines λ :

$$
\begin{equation*}
\lambda=\lambda\left(\operatorname{GSTR}\left(\mathrm{H}_{\mathrm{A}}\right)\right), \tag{2.4}
\end{equation*}
$$

where $\mathrm{H}_{\mathrm{A}}=\Sigma_{\mathrm{r}} \mathrm{RD}$.

The rest of the equations are from the Romer-Jones model are as follows:

$$
\begin{align*}
& \mathrm{dA}=\delta \mathrm{H}_{\mathrm{A}}{ }^{\lambda} \mathrm{A}^{\varphi}, \tag{2.5}\\
& \mathrm{dy} / \mathrm{y}=\mathrm{H}\left(\mathrm{dA}, \mathrm{Z}_{\mathrm{N}}\right), \tag{2.6}
\end{align*}
$$

where dy/y is macro level per-capita growth rate and Z_{N} is additional variables of the model (not detailed here).

Equations 1-6 appropriately situate different economic development policies in the system of causal relations ranging from geographically mediated knowledge production to macroeconomic performance. Some of the policy measures affect the level of knowledge present in the system of innovations such as R\&D support at private and public institutions education promotion at all levels (represented in equation 1). Other policies affect the strength of centripetal and centrifugal forces determining the dynamism described in equations 2-3. Such policies include infrastructure financing (rail and road connections, telecommunication networks) that diminishes transport costs and increases accessibility of the region and as such decrease centrifugal forces. Other policies such as supporting interactions among the actors of a system of innovations, promoting entrepreneurship, changing the legal systems (patenting, intellectual property law, licensing technologies from public institutions etc) are also instrumental in strengthening the centripetal forces in the system.

The above set of equations can drive empirical research in development policy modeling. Such a model should explicitly treat the geography of technological change in a dynamic manner to account for various cumulative processes inherent in macroeconomic growth explanation. Based on the above equations the following sub-modeling tasks should be involved:

1. Explicit modeling of the geographical aspect of technological change (equation 2.1);
2. Modeling of agglomeration economies and the resulting cumulative spatial processes (equations 2.2 to 2.4) in knowledge generation;
3. Modeling the macroeconomic effects of geographically explained technological change (equations 2.5 and 2.6).

Current econometric models widely used in development policy analysis such as the HERMIN model in Europe (Bradley, Whelan and Wright 1995, ESRI 2002) or the REMI model in the United States (Treyz 1993, Fan, Treyz and Treyz 2000) have moved into the direction of incorporating geography and technological change into their basically demanddriven systems, however, they are not yet fully developed according to the criteria listed under points 1 to 3 above. On the other hand EcoRET (Schalk and Varga 2004) directly incorporates the geographic dimension via a version of equation 2.1, but the dynamic manner space contributes to macroeconomic performance is not modeled there.

In our complex macro and regional model we account for all the above three aspects in three interconnected sub-models. Modeling the geographical aspect of technological change is accomplished via the regional TFP sub-model (chapter 3), modeling agglomeration economies and the resulting cumulative spatial processes is incorporated by a spatial computable general equilibrium (SCGE) sub-model and the macroeconomic effects are modeled by a macroeconometric sub-model.

2.2 Macro and regional impacts of CSF development policy instruments ${ }^{4}$

The main purpose of the complex macro and regional model is to serve as a tool for ex-ante evaluating the likely economic effects of different scenarios for spending Structural and Cohesion Funds resources as part of the Hungarian National Development Plan II. In this section the mechanisms by which the different CSF policy measures affect the economy in our modeling framework is outlined.

According to their different effects on relevant economic variables the instruments of CSF policy can best be classified into three broad categories:

- CSF support for infrastructure
- CSF support for human resources (education/training and R\&D)

[^3]- CSF support for productive structures (private investments)

These instruments are intended to influence the supply side of an economic system primarily, but, intended or not, they also have effects on the demand side. A classical example is the support for private investments that stimulate the productive capacity and investment demand simultaneously. Thus, in order to catch mutual and feedback effects between both sides of the economy a complete analysis of the effects of CSF has to consider their impacts both on the supply and the demand side and their interdependencies as well. The distinction between demand side and supply side effects is also important, because the former impacts are normally transitory while impacts of the latter are enduring. This will be of great interest when testing the impacts of the different policy instruments of CSF.

Because the main objective of EU regional policy is to stimulate growth in the less developed regions to achieve convergence (in output or income per capita), special efforts have to be made to associate CSF interventions to their long-run impacts on output and productivity respectively. Another important goal of EU regional policy is to increase employment and reduce unemployment. It is a priori uncertain whether this target can be achieved with the investment programs of CSF even if they are successful with regard to the growth goal. If technology (efficiency of production) is improved by the CSFs, a desired effect, less labor will be employed at any given level of output. Therefore, it depends on the magnitude of the growth effect of output whether the employment target can also be reached or not. However if labor costs are low relative to the cost of capital (as it is still the case in Hungary), such growth effects could be labor intensive and create plenty of employment. To evaluate CSF impacts correctly, therefore, it is necessary to take care of these effects properly with our analytical methods.

Figures 2.1 and 2.2 intend to give some additional help to describe our method in evaluating the CSF interventions in some more details. First we look at aid that is to stimulate private investment and second at the impacts of infrastructure improvements, R\&D and human capital formation. Figure 2.1 illustrates the way the EU aid for private investments can be evaluated within our analytical framework. To keep things clear, the flowchart describes the economic logic and mechanisms of some core relationships of the more complex analytical framework. Moreover, not all explanatory variables have been included. The consequence of

Fig. 2.1: Impacts of CSF support for productive structures
this is that only primary supply side effects on employment, investment and output growth can be outlined here.

Based on theoretical considerations it is the factor price ratio (i.e., the user costs of capital relative to the labor costs), which affects factor demands. Because CSF support for productive structures decreases this ratio, it affects investment positively but labor demand negatively: when labor becomes relatively more expensive than capital, a certain increase in output is produced more capital intensively, that is with less labor.

This undesirable substitution effect of private investment support may be compensated for by an output effect, which is also shown in Figure 2.1. An output effect arises because of two reasons. First, the CSF investment support reduces total production costs for all firms already located in the assisted region (Hungary) inducing them to expand production and purchase more of all inputs. Second, the location of new production capacities in Hungary depends upon an international comparison of the input prices by investors. Those countries, whose comparative cost advantages prevail, attract them. Therefore, the capital user cost differentials between assisted Hungary and non- (or less-) assisted regions in Europe will stimulate investors in the latter regions to shift production into Hungary (foreign direct investments), giving rise to an additional increase in capital and labor demand. Thus the output effect leads to more employment. Therefore, the fact whether CSF private investment incentives eventually increases or decreases labor demand depends on the sizes of the substitution and output effects. Employment will rise only if the output effect outweighs the substitution
effect. A reliable assessment of the impacts of the investment support requires a macro-model, therefore, in which these mechanisms are properly specified.

In Figure 2.1 also the effects of labor costs on factor demand and growth can be illustrated. As can be seen, the positive impact of CSF support for productive structures on investment explained by the substitution effect is higher, if wages are increased at the same time. But the overall effect on investment can still be lower, because the higher wages go against the output effect. That is, despite lower user costs, otherwise possible investments from abroad are deterred. Thus, the positive employment and growth effects of CSF may be destroyed completely by wage increases. With our framework it is possible to isolate these effects caused by different policies and to ascribe them to the factor that is responsible for them.

For analyzing the impacts of CSF support for infrastructure and human resources we draw on insights in growth accounting (Barro 1998). This breaks down economic growth into components associated with changes in factor inputs and improvement of technology or „Total Factor Productivity" (TFP) growth. TFP is the channel by which the CSF investments in human capital and public infrastructure can be incorporated and their impacts on growth and other variables analyzed within our model framework.

TFP reflects technological progress and other elements. Recent econometric research for West German and USA regions show that the industrial structure, the age of the capital stock, agglomeration effects, innovation potential and also infrastructure and human resources (qualification of the labor force) are all related to TFP (Schalk, Untiedt 1996, Varga 2000). As depicted in Figure 2.2, improvements to basic infrastructure increases the productivity of capital, and an increase in the quality of labor force by human resource investment improves the efficiency of this factor. Thus, the CSF policies act as if firms used more productive capital at no cost or, alternatively, as the factor inputs actually used were available at lower production costs. Combined together, these effects improve competitive advantage, which lead to higher attractiveness of Hungary, more inward investment in production capacity (foreign direct investment) and growth. Again, the impact on employment is inconclusive. However, the output and income effects (not shown in Figure 2.2) should be sufficiently large to offset the labor shedding effects. The effect on growth is unambiguously positive.

Fig. 2.2: Impacts of CSF support for infrastructure and human resources

The advantage of our approach is that it captures the channels through which even temporary CSF supply-side oriented programs have the intended permanent effects in a proper way. A temporary financial support rise TFP and increases productivity and income per capita to a permanently higher level, while the Keynesian demand-side effect on output and income tapers off (this effect is not considered here).

The two sets of policies (i.e., investment support and infrastructure and human resources targeting) exhibit different geographical features. Investment support (formulated in our model as tax credit) displays no specific spatial characteristics assuming that those measures are applied with no geographic restrictions. However for modeling the second set of interventions the effects of geography should explicitly be accounted for as these measures influence technological change. As such, in the complex model support for productive structures appears in the macro sub-model only whereas support for infrastructure and human resources is modeled in the TFP and SCGE sub-models before they enter the macroeconomic model part.

3. Regional impacts of CSF development policy interventions on productivity: The TFP sub-model

The supply side effects of infrastructure investment and expenditures on education/training and R\&D work via increasing Total Factor Productivity (Figure 2.2). Thus finding an appropriate solution for modeling the effects of these CSF instruments on TFP and linking the changes in TFP into the macro-econometric model to study the impact on several macroeconomic variables is crucial in evaluating the effects of the Hungarian National Development Plan. One of the central aims of this research project was to establish the TFP block that can suitably serve these aims.

However, previous empirical research provides little help in this respect. Studies in this area focus either on the effect of human capital on economic growth (e.g., Tallman and Wang 1992, Fukuda and Toya 1994, Mulligan and Sala-i-Martin 1995, Lee and Lee 1995, Gemmell 1996, Fernandez and Mauro 2000, Fuenta and Donenech 2000, Bassanini and Scarpetta 2001) and productivity (e.g., Engelbrecht 1997, Kaufman, Luzio, Dunaway 2001) or on the growth effects of public infrastructure (e.g., Barro 1990, Christodoulakis 1993, Bajo-Rubio and Sosvilla-Rivero 1994, Leigthart 2001) within a single equation framework but not in a macroeconometric model. On the other hand, in traditional macro-econometric models the change in TFP induced by infrastructure investments and human capital expenditures is either not accounted for or if it is of any interest the relevant elasticities are not estimated but calibrated (e.g., Bradley and Untied 2000) .

The solution applied in this study originates in the problem formulation of Acs and Varga (2002) and Varga (2006) as changes in TFP are addressed here in a spatialized macromodeling framework in which technological progress and economic growth depends to a considerable extent on localized factors. The conceptual basis of this approach is in the new economic geography literature, in the innovation systems literature and in the "new", endogenous theory of economic growth.

3.1 Empirical implementation

The starting point in empirically modeling changes in Total Factor Productivity is equation (2.5) as originally developed in Romer (1990). Constructing a variable to measure the change in technology is a crucial element in the development and practical implementation of the model. In this respect we followed the solution common in the growth accounting literature (Barro 1998, Barro and Sala-i-Martin 1995). In this literature where the focus is to empirically separate the effects of the changes in capital, labor and technology on economic growth the level of technology is measured as the residual after the contribution of the other two factors of production is accounted for. This residual is called Total Factor Productivity (TFP). Our choice of a regionalized technological change model implies that TFP levels are calculated for each of the spatial units. Thus the empirical counterpart of dA in equation (2.5) is a measure of the change in TFP.

The effectiveness of research in creating new technologies is influenced to a large extent by knowledge spillovers. Romer (1990) assumes that the total stock of knowledge (A) is accessible with no geographical restrictions. However, the recent empirical literature on knowledge spillovers provided sufficient counter-evidence of the Romerian assumption of equal accessibility of knowledge in space. A significant portion of knowledge flows is indeed spatially bounded mainly due to the high level of tacitness in new scientific-technological knowledge. The two types of knowledge are transported by different mechanisms. The perfectly accessible part consists of already established knowledge elements in codified forms and as such it is transmitted via scientific publications or patent documentations. On the other hand the tacit element is accessible most effectively by face-to-face interactions. Additional to the perfectly accessible and the primarily locally available knowledge elements much of knowledge spillovers originate internationally and transmitted by imported products or production processes.

Given that the TFP function is used in CSF policy analyses it is important to accomodate it to such a purpose. As indicated above and illustrated in Fig 2.2 we followed the EC categorization of CSF expentitures. According to this TFP-related expenditures are classified as human capital promotion (education/training and R\&D) and infrastructure investment support. In this respect we draw on an extensive empirical literature that studies the extent to which human capital and basic infrastructure effect economic growth (e.g., Barro 1990,

Christodoulakis 1993, Bajo-Rubio and Sosvilla-Rivero 1993, Mulligan and Sala-i-Martin 1995, Lee and Lee 1995, Engelbrecht 1997). In our modeling framework this growth effect is channeled via changes in Total Factor Productivity (Schalk and Untiedt 2000).

An important issue to be resolved is determining the exact data coverage of the human capital and infrastructure variables according to the types of expenditures CSF interventions commonly associated with. For the human capital variable it seems quite plausible that expenditures on education and training and R\&D should be accounted for there. On the other hand for some types of infrastructure investments (such as transportation, utilities or telecommunications) it is quite natural that they need to be part of the infrastructure variable. However, finding the way expenditures supporting health care is being plugged into the equation needed some considerations. Our solution is based on both theoretical arguments as well as empirical experience. With respect to theoretical base we argue that the health care system works in many ways similar to the infrastructural sector as its service (i.e., workforce in a better shape to be employed) decreases costs of the same size of output very much similar to the way infrastructure investments increase productivity such as constructing new highways. Regarding empirical experience classifying health care in the infrastructural sector is supported first by the fact that most of the support in health care are in the form of investments (contrary to the human capital sector where most of them are expenditures) and second by the fact that health care investment enters the equation significantly only if it is part of infrastructure and not in cases when it is included in the human capital variable in any of the forms we experimented with. Other types of CSF supports most importantly environmental support is decided not to enter the TFP function as these types of expenditures do not seem to be clearly related to the supply side (at least not in the medium run) as their effects are mainly appear on the demand side.

The empirical TFP model has the following form:
(3.1) TFPGR $_{\mathrm{i}, \mathrm{t}}=\alpha_{0}+\alpha_{1}$ KNAT $_{\mathrm{t}}+\alpha_{2}$ RD $_{\mathrm{i}, \mathrm{t}}+\alpha_{3}$ KIMP $_{\mathrm{i}, \mathrm{t}}+\alpha_{4}$ INFRA $_{\mathrm{i}, \mathrm{t}}$

$$
+\alpha_{5} \mathrm{EDU}_{\mathrm{i}, \mathrm{t}}+\varepsilon_{\mathrm{i}, \mathrm{t}},
$$

where

- TFPGR is the annual rate of growth of Total Factor Productivity at the county level,
- KNAT is domestically available technological knowledge accessible with no geographical restrictions (A in equation (2.5)),
- RD stands for private and public regional R\&D (H in equation (2.5)),
- KIMP is imported technologies,
- INFRA is investment in physical infrastructure,
- EDU is investment in human capital (education and training),
- ε is the stochastic error term.

In the empirical analyses below we also applied the variable HUMRES which stands for expenditures in education, training and R\&D called human resources in the categorization of the EC. According to the theoretical framework outlined in the previous chapter, technological change depends to a large extent on local/regional factors of innovation. Thus the unit of empirical investigation applying equation (3.1) should be some sub-national geographical entity. Since the lowest level of spatial aggregation of the type of data we need for analysis is the county the selected unit of analysis is Hungarian counties. The spatial unit is denoted by i while t stands for time in equation (3.1).

To implement equation (3.1) in an empirical analysis we relied on different data sources. KNAT is measured by the number of patents available in Hungary obtained from the Hungarian Patent Office. In empirical estimations we measured RD alternatively either by R\&D employment or by R\&D expenditures aggregated from data at private, public and university research institutes. The Hungarian Central Statistical Office provides these data. The measure of KIMP is the share of foreign direct investments in total private investments. To measure foreign direct investments we used data on the number of firms in different size groups and percentage of firms in manufacturing. Data come from regional and county statistical yearbooks published by the Hungarian Central Statistical Office. Investments in infrastructure measure INFRA. Data on infrastructure investments include investments in transportation, telecommunication, health care and utilities. Data sources are regional statistical yearbooks. HUMCAP is measured by all (private and public) expenditures on education and training. Data sources are Hungarian National Accounts by the Central

Statistical Office. All the variables measured in monetary terms are in 1995 Hungarian Million Forints.

To empirically generate a variable measuring the growth in TFP we followed the solution developed in the growth accounting literature (Barro 1998). TFP levels for each county are calculated from a constant returns to scale Cobb-Douglas production function as the residual after the contribution of capital and labor is subtracted from the output ${ }^{5}$.

The effects of the different instruments applied in development policy intervention (infrastructure investment, education/training or R\&D support) might not stay in the targeted region only but could perhaps spill over to neighboring territories as well. In order to understand if the effects spill over to other regions at all we run tests of spatial dependence in the forms of spatial error and lag on each estimated versions of the TFP equation.

3.2 Estimation results

Estimation results of equation (3.1) are presented in Table 3.1. KNAT (stock of knowledge, measured as the number of available patents in Hungary) and RD (R\&D expenditures measuring research input in technological development) are the two variables representing the original Romer-approach. While KNAT is significant in all the variants of the equation RD is not when included separately from other human capital expenditures (Models 1 and 3). Out of the potentially important alternative variables measuring the regional innovation environment, KIMP, the share of FDI in total investments turns out to be the most influential for regional technological development. Its parameter enters the equation with the expected sign and also

[^4]Tab. 3.1: Pooled FGLS estimation results for TFP growth rates (TFPGR) and for 20 Hungarian counties, 1996-2003

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Final Model
C	$\begin{gathered} -2.5434 \\ (0.2989) \end{gathered}$	$\begin{gathered} -2.4740 \\ (0.2910) \end{gathered}$	$\begin{gathered} -2.4797 \\ (0.2919) \end{gathered}$	$\begin{aligned} & -2.4965 \\ & (0.2735) \end{aligned}$	$\begin{aligned} & -2.2423 \\ & (0.2728) \end{aligned}$	$\begin{aligned} & -1.8243 \\ & (0.2372) \end{aligned}$	$\begin{gathered} -1.0389 \\ (0.3408) \end{gathered}$
TFPGR(-2)							$\begin{aligned} & -0.2587 \\ & (0.0749) \end{aligned}$
KNAT (-2)	$\begin{array}{r} 0.0002 \\ (2.68 \mathrm{E}-05) \end{array}$	$\begin{array}{r} 0.0002 \\ (2.59 \mathrm{E}-05) \end{array}$	$\begin{array}{r} 0.0002 \\ (2.60 \mathrm{E}-05) \end{array}$	$\begin{array}{r} 0.0002 \\ (2.45 \mathrm{E}-05) \end{array}$	$\begin{array}{r} 0.0002 \\ (2.44 \mathrm{E}-05) \end{array}$	$\begin{array}{r} 0.0002 \\ (2.10 \mathrm{E}-05) \end{array}$	$\begin{array}{r} 8.84 \mathrm{E}-5 \\ (3.04 \mathrm{E}-05) \end{array}$
KIMP (-3)		$\begin{array}{r} 0.1582 \\ (0.0449) \end{array}$	$\begin{array}{r} 0.1526 \\ (0.0456) \end{array}$	0.1455 (0.043)	$\begin{gathered} 0.0892 \\ (0.0430) \end{gathered}$	$\begin{array}{r} 0.1219 \\ (0.0393) \end{array}$	$\begin{array}{r} 0.0826 \\ (0.0392) \end{array}$
RD (-2)			$\begin{array}{r} 1.29 \mathrm{E}-06 \\ (1.77 \mathrm{E}-06) \end{array}$				
d(INFRA(-1))				$\begin{array}{r} 3.79 \mathrm{E}-06 \\ (9.60 \mathrm{E}-07) \end{array}$	$\begin{array}{r} 1.46 \mathrm{E}-06 \\ (1.34 \mathrm{E}-06) \end{array}$	$\begin{array}{r} 1.56 \mathrm{E}-06 \\ (9.41 \mathrm{E}-07) \end{array}$	$\begin{array}{r} 2.11 \mathrm{E}-06 \\ (8.44 \mathrm{E}-07) \end{array}$
d(HUMRES(-2))					$\begin{array}{r} 6.95 \mathrm{E}-06 \\ (2.84 \mathrm{E}-06) \end{array}$	$\begin{array}{r} 4.74 \mathrm{E}-06 \\ (2.47 \mathrm{E}-06) \end{array}$	$\begin{array}{r} 5.63 \mathrm{E}-06 \\ (2.41 \mathrm{E}-06) \end{array}$
DUM99						$\begin{aligned} & -0.0601 \\ & (0.0081) \end{aligned}$	$\begin{gathered} -0.0610 \\ (0.0080) \end{gathered}$

Weighted Statistics							
R^{2}-adj	0.31	0.37	0.37	0.42	0.42	0.59	0.62
F-statistic	54.02	35.71	23.83	31.15	18.44	29.27	28.36
Prob (F-statistic)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Durbin-Watson stat	1.90	2.06	2.07	2.02	1.68	2.22	2.42
N	120	120	120	120	100	100	100
Unweighted Statistics $\mathrm{R}^{2} \text {-adj }$	0.14	0.19	0.20	0.21	0.23	0.35	0.42
ML Spatial error Neighb ML Spatial lag Neighb							1.25 $3.78 *$

Note: estimated standard errors are in parentheses
it is highly significant and quite stable through all the empirical models presented in Table 3.1. The knowledge stock KNAT affects TFP growth with a two-year time lag. Changes in public infrastructure investments, d(INFRA), and changes of expenditures in education, training and R\&D, d(HUMRES), represent the CSF instruments in the empirical model. After structural changes on the time domain is taken care of, the parameters enter the equation with the expected signs as well as with high significances. To increase in-sample forecasting power of the TFP equation we included the lagged dependent variable as well on the right hand side which enters the function with high significance. DUM99 is a year dummy to account for a structural brake in the TFP data.

The size order of the parameters is also in accordance with expectations. The highest coefficient value is given for technology import, KIMP that is not surprising taken into consideration that the crucial role of multinationals in Hungarian technology development is well recognized in professional circles. It might be taken as a good sign that TFP growth rate is affected by the knowledge stock with a relatively high coefficient suggesting an increasing importance of indigenous technological development. Turning to the role of the CSF instruments in TFP growth, spending on education, training and R\&D, HUMRES seems to be a more effective instrument (at least in a short and medium run) to influence firms' productivity than infrastructure investments, INFRA. It should be emphasized here that our model (at least at this stage of development that is determined dominantly by data constraints) can capture only short and medium run effects and the inevitable long run impacts of R\&D, infrastructure investments as well as education developments are only suggestive here.

Regression fit is good (the adjusted R-square has the value of 0.62 in the final model) taken into account the presence of cross sectional data for a relatively short time period. The overall performance of the equation is also impressive as suggested by the highly significant F statistics. Given the wide variety in TFP growth rates across counties it is not surprising, that heteroscedasticity is a major issue in estimation. Different econometric modeling approaches have been applied (such as fixed effect model, random effect model, SUR) but the most effective estimation technique (in the sense of regression fit, parameter stability and parameter significances) was Feasible Generalized Least Squares (FGLS) with cross-section weighting and White heteroscedasticity consistent standard errors and variance. The magnitude of the
problem of heteroscedasticity in the data is indicated by the significant differences between respective regression fits with and without weighting ${ }^{6}$.

Spatial dependence in the final model is non-significant in the form of spatial error and only marginally significant for spatial lag that suggest that the out-of region impact of a development policy intervention is only negligible ${ }^{7}$.

Given that the estimated equation in Table 3.1 does serve a highly practical aim of impact analysis it is necessary to relate the size of the estimated parameters of the two policy variables to findings in the related literature in order not to calculate unrealistic policy effects. Since no similar geographical knowledge production function study has been carried out to the best of our knowledge it is not possible to relate the estimated parameters directly to other estimations. However, it is possible to calculate infrastructure and human capital investment elasticities in GMR. We compare those values to findings in the literature. In the followings we rely on the survey made by Bradley, Morgenroth and Untiedt (2000). Our calculated elasticity values are situated well in the range of the surveyed studies ${ }^{8}$. For infrastructure the estimated elasticities in the literature range between 0.1 and 0.8 whereas our calculated elasticity is 0.40 . With respect to human capital (education and training) the range in the studies is $0.15-0.40$ whereas the GMR elasticity for human resources is 0.30 .

The historical forecasting power of the estimated final equation in Table 3.1 is also appropriate considering the aim it serves in the complex model: MAPE (mean absolute percentage error) of forecasting TFP^{9} at the national level is $1,87^{10}$ and the correalation

[^5]between observed and predicted TFP levels is 92 percent. Fig. 3.1 depicts observed and predicted TFP levels at the national level.

Fig. 3.1: Observed and predicted levels of national TFP

In policy simulations the estimated TFP equation plays a crucial role in the complex model system. Regional values of the policy variables (INFRA, HUMPAC) are plugged into the equation to calculate the likely change in the TFP growth rate. This estimated change in the TFP growth rate enters the SCGE sub-model to generate regional values of TFP levels as a result of agglomeration effects as well as employment, wages, investment and output. TFP levels generated by the SCGE sub-model will then enter the macroeconomic model to account for the macro level outcomes of CSF interventions.

[^6]
4. Modeling dynamic agglomeration effects and the resulting cumulative spatial processes: The Spatial Computable General Equilibrium (SCGE) sub-model ${ }^{11}$

To model dynamic agglomeration effects of CSF interventions in the complex macro and regional model a spatial computable general equilibrium (SCGE) model is integrated. CGE models are numerical and empirical applications of Walrasian general equilibrium models in real world circumstances (Hosoe 1999). These models build on usual assumptions in microeconomics (i.e., utility and profit maximization/cost minimization, perfect competition and most recently monopolistic competition). CGE models are especially well suited to simulate the short- and long run impacts of shocks to the system. A particularly attracting feature of these models is that they do not need as many observations and details in the data as more traditional econometric techniques do.

Spatial CGE modeling is a very recent development in empirical research. A couple of examples include Oosterhaven et. al (2001), Thissen (2003), Koike and Thissen (2005). These models are the empirical counterparts of new economic geography systems. Short run SCGE models involve equilibrium in each region whereas in the long run not only each of the regions but also the whole spatial system is in equilibrium as there is no inclination by firms or households to relocate since differences across regions with respect to real incomes disappear resulting from a continuous change in the spatial distribution of economic activities. SCGE models have successfully been applied to simulate regional effects of certain development policies such as highway investment policies both in the short run and in the long run.

The particular SCGE model integrated into our framework is RAEM-Light. This model is a simplified version of RAEM the model for the Netherlands (Thissen 2003). RAEM-Light is particularly suitable in situations when regional data are only scarcely available for several variables necessary in RAEM. Data availability problems constrained the application of RAEM in Hungarian circumstances as well. This explains the decision towards RAEM-Light. This chapter draws on the description of the model in Koike and Thissen (2005). However, the particular form of RAEM-Light incorporated into the complex model system is somewhat different from the one recently applied in the Netherlands and South Korea for policy simulations. It was necessary to adapt the model to Hungarian circumstances on the one hand

[^7]and to the requirements of the complex model system on the other. (For details consult the Appendix.) Regarding the second issue especially adaptation to the TFP sub-model required some important changes in the technology part of RAEM-Light.

4.1 Main model assumptions

a. The model considers several regions and also different industrial sectors (20 regions and 4 sectors for Hungary);
b. The model distinguishes between short run (i.e., a period of one year with the assumption that equilibrium at each region is reached at both goods and factor markets) and long run (several years through which the system is attracted towards a spatial equilibrium as a result of factor movements across regions);
c. The total number of households is assumed fixed;
d. Total housing supply is fixed or exogenously determined in each region;
e. Capital and labor are used in production;
f. Iceberg-type transportation cost (i.e., transportation cost is measured as a portion of the good needed to transport the commodity for a given distance);
g. Capital stock is owned by households (national dividend);
h. The model considers both centripetal and centrifugal forces that form the geographical structure of the economy. Centrifugal forces weaken spatial concentration while centripetal forces work towards further agglomeration. In the model the centrifugal forces are transportation costs and congestion. The level of congestion is measured by per capita housing. As indicated above housing supply is considered fixed in the model consequently increasing population decreases per-capita housing which works against agglomeration. The centripetal force in the model is a positive agglomeration economy measured by the level of Total Factor Productivity in the region. Increasing concentration of economic activities (measured by the level of employment in the model) increases the probability of interactions among the actors of innovation in the region that results in a higher technological level. Thus increasing concentration works towards further agglomeration. The actual balance between centripetal and centrifugal forces in the model determines the migration of labor and capital. As such the spatial distribution of production, TFP and inputs are all determined by the interplay of centrifugal and centripetal forces.

4.2 Data requirement and data sources

RAEM-Light does not need extensive data inputs. The basic information comes from the National Accounts statistics of the Hungarian Central Statistical Office. Value added by sectors is applied to get output values and also (using income shares for calculation) capital and labor inputs. As such, the measure of production inputs is value added. In addition to these population data (Central Statistical Office), stock of housing (number of flats from Central Statistical Office) and transportation costs information are needed. For transportation costs a matrix is required with the iceberg-type values (provided by Transman Kft). Details regarding these matrices are provided in the Appendix. All data are required for one particular year, 2003. Capital rent is set to 1 and equilibrium wages are calibrated.

4.3 The main equations

The production function has a Cobb-Douglas form with capital, labor and technology inputs. To make RAEM-Light suitable for policy simulations in the complex model the following formulation of technology with the regional (i) and sectoral (m) dimensions is introduced
(4.1) $\quad A_{i, m, t}\left(L_{i, t}\right)=\zeta_{i, m, t} A^{\prime} L_{i, t}^{\gamma}$
where A is the level of technology, A' is national "average" level of technology L is regional employment at time t .

$$
\begin{equation*}
\zeta_{i, m, t}=\text { TFPSHARE }_{i, m}\left(1+\text { TFPGROWTH }^{t}\left(1+\text { TFPSHOCK }_{i, t}\right)\right. \tag{4.2}
\end{equation*}
$$

where TFPSHARE is the average share of each industry at the county level according to empirical data for the period of 1996-2003. TFPGROWTH is the annual growth rate of technology which is the same as in the macro model, 1.49 percent per year according to the calculations from aggregated regional TFP levels ${ }^{12}$.

[^8]Development policy interventions (i.e., infrastructure investment, human resources support) resulting in TFP growth changes estimated in the TFP sub-model affect the SCGE model by the variable TFPSCHOCK as depicted in equation 4.2. TFPSHOCK is a change in the annual TFP growth rate resulting from policy interventions. Equations 4.1 and 4.2 formulate the level of technology in a given region/sector at a given time period resulting from policy interventions. This level of technology constitutes the "national average" element (A'), the effect of agglomeration at the particular region (measured by L^{γ} where L is employment and γ is estimated econometrically) and the sectoral element (TFPSHARE). A' ζ measures the policy effect without considering agglomeration differences across regions. The agglomeration effect is accounted for by multiplying A' ζ with the term $\mathrm{L}^{\gamma 13}$.

Interregional demand for goods determines output of the firm and following the principle of cost minimization capital and labor demand is formulated:

$$
4.3 \quad \mathrm{~L}_{i, m, t}^{\prime}=\frac{a_{m}}{w_{i, t}} q_{i, m, t} y_{i, m, t}^{\prime}
$$

$4.4 \quad K_{i, m, t}^{\prime}=\frac{1-a_{m}}{r} q_{i, m, t} y_{i, m, t}^{\prime}$
where a stands for partial production elasticity of labor, y is output and q is price with no transportation costs included (F.O.B. price):
$4.5 \quad q_{i, m, t}=\frac{w_{i, t}^{a_{m}} r^{1-a_{m}}}{A_{i, m, t} a_{m}^{a_{m}}\left(1-a_{m}\right)^{1-a_{m}}}$
where w and r are wage and capital rent and the rest of the notations is as before.

Utility is formulated as a Cobb-Douglas-type function with goods and housing consumption. Utility maximization results in goods demand at sector m:

[^9]$4.6 \quad x_{i, m, t}=\frac{\beta_{m}}{1-\alpha} \frac{1}{p_{i, m, t}}\left(l_{i} w_{i, t}+\frac{r \mathbf{K}_{t}}{\mathbf{N}_{t}}\right)$
where \mathbf{N} and \mathbf{K} are population and capital at the national level, p is price including transportation costs (C.I.F price). β_{m} is the share of expenditures spent on good m in the total budget of a consumer.

The probability of trade between region i and j is formulated as follows:
$4.7 \quad s_{i j, m, t}=\frac{y_{i, m, t} e^{-\lambda_{m} q_{i, m, t}\left(1+\tau_{j, m}\right)}}{\sum_{k=1}^{I} y_{k, m, t} e^{-\lambda_{m} q_{k, m, t}\left(1+\tau_{k j, m}\right)}}$

Interregional trade volume is
$4.8 \quad z_{i j, m, t}=N_{j, t} x_{j, m, t} s_{i j, m, t}$

Supply is derived from interregional demand
$4.9 \quad y_{j, m, t}^{\prime}=\sum_{i=1}^{I}\left(1+\tau_{i j, m}\right) z_{i j, m, t}$

4.4 Solution algorithm for short run

a. Set $\mathrm{r}=1$ and initial wage w for each region
b. Calculate average cost (q)
c. Calculate the probability of interregional trade (S) and C.I.F price (p)
d. Calculate demand (x) and interregional trade volume(z)
e. Calculate production (y) by 4.9
f. Calculate factor demands (K and L)
g. Check whether labor is in equilibrium if yes, short run equilibrium is reached if not
f. Change w and start from a.

4.5 Long run: the main equations

After a short run (regional level) equilibrium is reached labor starts migrating to places where utility levels are higher according to the following equation:
$4.10 \quad L_{i, t+1}=\left(L_{i, t}-\phi^{\sum_{i \in I} L_{i, t}} I+\frac{e^{\theta\left(u_{i, t}+c_{i}\right)}}{\sum_{i \in I} e^{\theta\left(u_{i, t}+c_{i}\right)}} \phi \sum_{i \in I} L_{i, t}\right) G$
where I is number of regions G is annual percentage change in labor. Capital movement follows labor migration (according to the assumption of national dividend). Full spatial equilibrium is reached when no inclination for migration arises.

4.6 Parameters: calibration, estimation and application from earlier results

To adapt RAEM-Light to Hungarian circumstances a particular care should have been given to setting parameter values. Some of the parameters are taken from earlier studies/experiences, some of them are estimated econometrically and some of them are calibrated. Table 4.1 provides further details in this respect. Calibration is governed by the principle of getting the best values for several statistics describing the spatial-temporal behavior of the SCGE model (as compared to data of the average values of the variables over the period of 1996-2003). Table 4.2 exhibits these values for the parameter combination chosen. As shown in the table the model is capable of reproducing the spatial-sectoral distribution of the main variables with high precision especially output, labor, investment and population (i.e., the patterns of migration).

Tab 4.1: Setting parameter values in the SCGE model (RAEM-Light Hungary)

parameter	description	type	alue
delta	depreciation rate	Taken the same as in the macro model	0.10
alpha	utility function parameter (housing)	based on statistical data	0.2
betal	utility function par. (sector 1 goods)	Calibrated based on consumption shares	0,355095
beta2	utility function par. (sector 2 goods)	Calibrated based on consumption shares	0,026118
beta3	utility function par. (sector 3 goods)	Calibrated based on consumption shares	0,229658
beta4	utility function par. (sector 4 goods)	Calibrated based on consumption shares	0,189128
fi	migration parameter	calibrated	0,05
theta	migration parameter	calibrated	1
G	labor growth	Annual values are taken from the macro model	
a1	Cobb-Douglas production function (sector 1)	Calibrated based on labor income share	0,4555
a2	Cobb-Douglas production function (sector 2)	Calibrated based on labor income share	0,885274
a3	Cobb-Douglas production function (sector 3)	Calibrated based on labor income share	0,442312
a4	Cobb-Douglas production function (sector 4)	Calibrated based on labor income share	0,683298
lambda1	Transportation parameter (sector 1)	econometrically estimated	23,5
lambda2	Transportation parameter (sector 2)	econometrically estimated	24,3
sigma1	Share of investment (sector 1)	National Accounts data	0,55122
sigma2	Share of investment (sector 2)	National Accounts data	0,13162
sigma3	Share of investment (sector 3)	National Accounts data	0,16956
sigma4	Share of investment (sector 4)	National Accounts data	0,00446
\mathbf{A}^{\prime}	Efficiency parameter TFP	econometrically estimated	0,296959
gamma	Efficiency parameter TFP	econometrically estimated	0,130709

Tab. 4.2: Indicator values to evaluate model performance: The final model

icator description		value
Li correlation (spatial)	Labor correlation (regions in country)	0,99666
Lm correlation (sectorial)	Labor correlation (sectors in country)	0,97077
mean $\Sigma \mathrm{m}$ Lim=1 correlation	Labor correlation (sectors in region)	0,93257
mean $\Sigma \mathrm{m}$ Lim=1 MAPPD	Labor MAPPD (sectors in region)	3,305\%
mean $\mathrm{\Sigma i} \mathbf{L i m}=1$ correlation	Labor correlation (regions in sector)	0,92202
mean $\Sigma \mathrm{L}$ Lim=1 MAPPD	Labor MAPPD (regions in sector)	1,131\%
Yi correlation (spatial)	Output correlation (regions in country)	0,99695
Ym correlation (sectorial)	Output correlation (sectors in country)	0,98901
mean $\Sigma \mathrm{m}$ Yim=1 correlation	Output correlation (sectors in region)	0,95923
mean $\Sigma \mathrm{m}$ Yim=1 MAPPD	Output MAPPD (sectors in region)	3,928\%
mean $\Sigma \mathrm{i} \mathbf{Y} \mathbf{Y m}=1$ correlation	Output correlation (regions in sector)	0,98320
mean $\Sigma \mathrm{i}$ Yim=1 MAPPD	Output MAPPD (regions in sector)	0,837\%
INVi correlation (spatial)	Investment correlation (regions in country)	0,92026
INVm correlation (sectorial)	Investment correlation (sectors in country)	0,98512
mean $\Sigma \mathrm{m}$ INVim $=1$ correl.	Investment correlation (sectors in region)	0,91836
mean $\Sigma \mathrm{m}$ INVim $=1$ MAPPD	Investment MAPPD (sectors in region)	5,432\%
mean $\Sigma \mathrm{i} \mathbf{I N V i m}=1$ correl.	Investment correlation (regions in sector)	0,79969
mean $\mathrm{\Sigma i} \mathbf{N V i m}=1$ MAPPD	Investment MAPPD (regions in sector)	1,723\%
wi correlation (spatial)	Wages correlation (regions in country)	-0,24169
wi MAPPD	Wages MAPPD (regions in country)	14,624\%
Ni correlation (spatial)	Population correlation (regions in country)	0,99679
Ni MAPPD	Population MAPPD (regions in country)	0,105\%

MAPPD $=$ Mean Absolute Percentage Point Difference

5. Macroeconomic impacts of CSF development policy interventions: The macroeconomic sub-model ${ }^{14}$

5.1 Data, estimation and calibration

The Appendix contains the full equation system of the model. In this section we confine ourselves to the presentation of the characteristic features of the model in the light of its main economic and technical relationships. A brief discussion of background theory is given, the specification of the mathematical forms of the model equations derived, the estimation of the coefficients performed and finally the forecasting ability of each calibrated function illustrated. Data sources are the Eurostat AMECO database as well as the Hungarian Central Statistical Office (National Accounts). For details consult the Appendix. Because of the strong structural breaks and changes in the first years of the transformation process, for some variables data prior to 1995 have not been very reliable for econometric estimation. Besides, due to the small number of observations available, sophisticated methods and techniques commonly used for econometric estimation and hypothesis testing were either inappropriate or not feasible. Therefore, the parameterization of some behavioral equations has to be performed by way of indirect calibration. How we proceeded in these cases is explained in more detail in the following at the respective places.

5.2 Employment and investment

The theoretical underpinnings of the factor demand equations (labor and capital demand) for the business sector, which belong to the supply block of the model, follow the neoclassical theory of the firm. This is an entirely conventional specification also used, i.e., in the modeling of the supply side of the seven major OECD economies in the INTERLINK model (see Turner, Richardson, Rauffet 1996) and in Schalk, Untiedt (2000). According to this theory, factor demands are determined above all by factor costs for labor and capital and the technology of the underlying production function. Despite of similar theoretical frameworks adopted, however, varying factor demand relationships are obtained, depending on two

[^10]different key assumptions made in both model types. The first concerns the form of the underlying production function and the second the economic behavior of the firms (profit maximization or cost minimization).

In our approach it has been assumed that the firm's choice of production techniques can be represented by a vintage capital production function in which capital is viewed putty-clay, i.e. ex-ante substitutability between capital and labor is assumed but fixed ex post proportions after capital installation. If IPV represents machines respective private gross investment that are combined with labor employed on these machines, \triangle ETB, to produce the desired increase in gross output of the business sector, \triangle GDPBV, the ex-ante production function can be written in its general form as (see Schalk, Untiedt 2000 for details):

$5.1 \Delta \mathrm{GDPBV}=\mathrm{f}_{1}(\Delta \mathrm{ETB} \cdot \mathrm{ELEFFU}, \mathrm{IPV})$

ELEFFU is a technology parameter, which reflects the efficiency of labor. Firms in a country may be less efficient than in others due to a lack of infrastructure and human capital, lower private capital formation which incorporates the newest technology, a shortage of innovative firms, low competitiveness, unfavorable industrial structure, etc. Thus, the explicitly introduction of ELEFFU into the model creates one of the channels through which the longterm supply side effects of CSF measures for enhancing infrastructure, human resources and private investment can be analyzed. These measures bring about an improvement in the efficiency of labor or technology of production in the broadest sense, thus increasing longterm growth of productivity and output in the economy.

Regarding the optimization behavior of the firm cost minimization is assumed, that is, considering the putty-clay production technology, firms decide on a certain output increase in each period and minimize the cost of producing this production increment. Combining this condition with the assumed production function leads to a joint factor demand system, which can be written in the following general form:

```
IPV = f ( }\Delta\textrm{GDPBV},\textrm{WSSE}/\textrm{UCC}, ELEFFU )
```

WSSE is the wage rate and UCC represents the user cost of capital. This factor demand model has some striking properties which differ considerably from that of the OECD-INTERLINK, where in contrast to our model profit maximization behavior and a putty-putty production technology have been assumed, i.e. the capital stock is malleable ex-ante and ex post:

- Investment and also changes of employment do not depend on changes in the capitallabor cost ratio, as is the case in a factor demand model based on a putty-putty production technology. With a putty-clay production function it is the level of the input cost ratio, which produces a change in capital and employment.
- It is the relative factor prices (labor cost in relation to the user cost of capital) that determine factor demand in both equations and not the absolute factor costs as in the profit-maximizing model. In the investment function a positive sign for the influence of a relative factor price change is expected, in the labor demand function a negative sign. Therefore, a reduction in the user cost of capital relative to labor, i.e. evoked by the private capital supports of CSF policy, increases investment demand but decreases employment. This substitution effect of a change in the factor price ratio is accounted for in our approach but excluded by assumption in the OECD-INTERLINK model.
- By means of the underlying production function, the technology parameter ELEFFU has also been introduced into the factor demand functions. The impact of ELEFFU is expected to be negative in both factor demand equations: higher efficiency reduces capital and labor input needed to produce a given output. Therefore, if technology is improved by CSF policy, a desired effect, less labor will be employed, thus violating the employment target. But this is true only if production remains constant. Higher efficiency also lowers factor costs, which increases competitiveness and leads to higher output growth and this, in turn, increases factor demands. In the OECD modeling, only this latter effect of ELEFFU on the demand for capital and labor is captured. To capture it in our model an additional equation is needed which links efficiency to growth.

Such an equation is also necessary to model the output effect of factor price changes properly, because equations (2) and (3) can only take account for their substitution effects. An output effect, i.e. caused by the reduction of the user cost of capital as a result of CSF investment subsidies, may arise for the reasons discussed in the preceding section. By means of an output equation, all these discussed impacts of the factor prices on output growth are captured.

The calibration of the factor demand equation system (5.2) and (5.3) is performed in following steps:

- In the first step, the interrelated factor demand system is derived consistently from a joint optimization process (cost minimization) under an explicit specified form of the production function.
- In a second step, the factor demand functions, whose coefficients can be constructed from the elasticities of the underlying production function, are "indirectly" calibrated by econometric estimates of the production function.
- In a third step, a lag structure is quantified in order to introduce some dynamics into what up to this point has been basically the specification of a static model in equilibrium. Thus the short-term dynamics and long-run behavior of the model system are taken into consideration simultaneously. Because of the data problem, only simple lag structures can be modeled.
- Finally, the remaining parameters are estimated with the available historical data.

As for the production technology it is assumed that the business sector output is determined by a Cobb-Douglas production function with constant returns to scale. In the putty-clay technology or vintage-capital version this function can be written as:
$5.4 \Delta \mathrm{GDPBV}=(\Delta \mathrm{ETB} \cdot \mathrm{ELEFFU})^{\mathrm{XTAU}}(\mathrm{IPV})^{1-\mathrm{XTAU}}$

XTAU is the elasticity of output with respect to labor and labor efficiency, ELEFFU, represents labor augmenting technical progress. ${ }^{15}$ This production function type (but not in its vintage-capital version) has also been adopted in the OECD-INTERLINK sub-models for the seven major OECD member countries. It is also used in other empirical research works upon which we draw in the following for calibrating the coefficients of the factor demand equations. Consistent with this production technology and assuming cost minimization, the desired investment and labor demands are given, in log-linear form and ignoring intercept terms (which is done throughout the following analysis), as:

$5.5 \operatorname{logIPV}=$ XTAU $\log ($ WSSE/UCC $)+\log \Delta G D P B V-X T A U ~ \operatorname{logELEFFU}$

$5.6 \log \Delta \mathrm{ETB}=(1-\mathrm{XTAU}) \log (\mathrm{WSSE} / \mathrm{UCC})+\log \Delta \mathrm{GDPBV}-\mathrm{XTAU} \operatorname{logELEFFU}$

Before calibrating these equations various methodical problems need to be solved and some approximations have to be made to obtain manageable equations. First, labor efficiency, ELEFFU, which is not an observable variable, is substituted by the expression:

$$
\operatorname{logELEFFU}=\lambda \mathrm{TIME}
$$

TIME is a time variable and λ the rate of labor efficiency growth. Second, \triangle GDPBV and $\Delta \mathrm{ETB}$, which cannot be collected, are to be substituted by measurable variables. Generally, as a substitute for the variables we can write:

$$
\Delta \mathrm{X}_{\mathrm{t}}=\mathrm{X}_{\mathrm{t}}-\left(1-\mathrm{d}_{\mathrm{X}}\right) \mathrm{X}_{\mathrm{t}^{-1}}
$$

The subscript t is for time and d_{X} is a salvage rate. As the logarithmic approximation for this expression can be used:

$$
\log \Delta \mathrm{X}_{\mathrm{t}}=\log \mathrm{d}_{\mathrm{X}}+\log \mathrm{X}_{\mathrm{t}-1}+\left(1 / \mathrm{d}_{\mathrm{X}}\right) \Delta \log \mathrm{X}_{\mathrm{t}}
$$

[^11]Third, to incorporate dynamics lagged investment is introduced in the investment function as an additional explanatory variable. This can be justified if, i.e., delivery of investment is distributed over time and it takes time to incorporate delivered capital into the production process. Finally, we have to check for structural breaks in our data set, which is supposed to having occurred around year 1995.

All these taken into consideration in (5) and (6) and after some rearrangements, following factor demand equations are obtained as a basis for calibration (the intercept is now again included and the time index t ignored throughout the following analysis):

$$
\begin{aligned}
& 5.7 \log \mathrm{IPV}-\log \mathrm{IPV}_{-1}=\mathrm{c}_{7}+\beta / \delta\left(\log \mathrm{GDPBV}-\log \mathrm{GDPBV}_{-1}\right)-\beta\left[\log \mathrm{IPV}_{-1}\right. \\
& -\log \mathrm{GDPBV}_{-1}-\mathrm{XTAU}(\log (W S S E / X T A U)-\log (\mathrm{UCC} /(1- \\
& \text { XTAU)))+XTAU } \lambda \text { TIME }]+\gamma \text { DUMMY }
\end{aligned}
$$

$$
5.8 \quad \begin{aligned}
\operatorname{logETB}-\operatorname{logETB}_{-1}=\mathrm{c}_{8}+ & \left(\operatorname{logGDPBV}-\operatorname{logGDPBV}_{-1}\right)-\delta\left[\operatorname{logETB}_{-1}\right. \\
& -\operatorname{logGDPBV}-1+(1-\mathrm{XTAU})\left(\log \left(\mathrm{WSSE}^{-} \text {XTAU }\right)\right. \\
& -\log (\mathrm{UCC} /(1-\mathrm{XTAU})))+ \text { XTAU } \lambda \text { TIME }]+\eta D U M M Y
\end{aligned}
$$

The variable DUMMY has been introduced into both equations now additionally to take account for a possible structural break in the data. The equations (5.7) and (5.8) are very similar to error-correction models (ECM), with the error terms in square brackets, though they have not been formulated as ECM-models explicitly. One feature of the error-correction model is that the coefficients of the error terms have specific economic meanings: β in the investment function equals the adjustment lag in investment and δ in the employment equation is the depreciation rate of employment and output. Besides, our modeling technique allows for the separation of short-run dynamics from the long-run impacts of CSF interventions, the latter being of most interest of course for EU-policy.

An econometric estimation of all coefficients in the factor demand equations (8 parameters) with the limited available data (10 observations) is infeasible and altogether doomed to fail. Therefore, we have in a first step reduced the number of the parameters to be estimated by inserting their values obtained from other investigations for Hungary. The elasticity of output
with respect to labor can be approximated by the labor share in national income, which tends to be close to two thirds in most OECD countries (see OECD 2000, 218). We set the coefficient α to this level, though statistical data for Hungary indicates a slightly lower value (see Hviding 1999). Besides, from calculations of capital stock data for Hungary (see Darvas and Simon 1999) an average depreciation rate, δ, of 0.10 can be derived, which is in line with international standards and also used by the OECD in its estimation of potential output growth for Hungary (see OECD 2000, 218 f.). XTAU and δ are substituted by these assumptions in equation (5.7) and the remainder of the coefficients is estimated by OLS yielding the following equations:

```
ETB = ETB(-1) * EXP( - 0.6462765982 + LOG(GDPBV / GDPBV(-1)) -
0.1 * (LOG(ETB(-1) / GDPBV(-1)) + (1 - XTAU) * LOG((WSSE /
XTAU) / (UCC / (1 - XTAU))) + XTAU * LOG(ELEFFU)) +
0.01838048857 * (DUMMY_95_96 + DUMMY_99_02) - 0.0346201138 *
DUMMY_92_94 - 0.01127018745 * DUMMY_93)
```

5.10

GDPBV(-1)) - (1. / 0.1) * LOG(GDPBV / GDPBV(-1)) - XTAU		
LOG((WSSE	XTAU) / (UCC / (1.	- XTAU)) + XTAU
LOG(ELEFFU))	+ 0.0565779131 *	(DUMMY_94_96_98_99)
0.03849758663	DUMMY_95_01_02	0.02338901205

DUMMY_97_98)

Interestingly, the growth rate of labor efficiency, λ, seems to be fairly high (2.2 percent). However, this value implies a growth rate for the Total Factor Productivity (TFP) of 1.49 ercent $\left(\mathrm{XTAU}^{*} \lambda\right) .{ }^{16}$ This value is in accordance with the values used in both the TFP as well as the SCGE sub-models.

Before using the model for multiplier analyses and simulation respective evaluation of CSF policies it should be tested for its capability to describe the empirical facts that have been used for its calibration. That a model is able to reproduce the historical data is a necessary (though

[^12]not sufficient) condition for it to be realistic. Besides, such a check on the model within sample properties may provide us with valuable information on the quality of our calibration process and point out where it has to be repeated. In the figures below plots of the forecasts with plus and minus two standard error bands are provided. These two standard error bands provide an approximate 95% forecast interval.

To examine the ability of the calibrated equations to provide forecasts of investment and employment demand we perform simulations which use the historical values of the exogenous variables in each equation and solve for the endogenous investment and employment variables. The resulting ex-post predictions for the variables are then compared to their historical values. The mean absolute percentage error (MAPE) of the simulated from the actual levels for the endogenous variables is then used as a measure for the forecasting ability of the model equations. According to a commonly applied rule of thumb in cases MAPE is less than 5 percent forecasting ability of the model is acceptable. Because on the right-hand side of the equations appear also the lagged endogenous variables as explanatory variables two types of simulations can be performed. If for the lagged endogenous variables the actual historical data are used, it is a question of a static simulation, and of a dynamic simulation when the values assigned to the lagged endogenous variables are the forecasts from previous periods. Figures 5.1 and 5.2 exhibit forecasted values and the respective MAPEs for the employment and investment equations. For both cases forecasting power is excepcionally good.


```
Forecast: ETBF
Actual: ETB
Forecast sample: 19922003
Included observations: }1
Root Mean Squared Error 9.795858
Mean Absolute Error 8.102311
Mean Abs. Percent Error 0.273212
Theil Inequality Coefficient 0.001636
    Bias Proportion 0.016865
    Variance Proportion }0.35394
    Covariance Proportion 0.629189
```

Fig. 5.1: \quad Forecast of employment (ETB)

Fig. 5.2: \quad Forecast of investment (IPV)

5.3 Output

The output equation for the business sector is, as the factor demand functions, also based on the theory of the firm and contains both demand side as well as supply side aspects. The decision of the firms about the level and location of production depends upon cost conditions and demand factors. In formulating the output equation we relied on the theoretical base of the OECD-INTERLINK model presented in Turner, Richardson and Rauffet (1996).

The demand factors affecting the capacity output are represented by the final domestic demand variable FDDV and net export (the difference between export and import XGSVMGSV). FDDV captures the influence of national demand on output. It also serves to take into account the counteracting effects of wages on foreign direct investments: a high wage level might deter new plants from abroad because of high production costs but also attract them because of high demand potential. In addition, a high wage level can be viewed as an indicator for the availability of highly qualified labor and therefore may influence location decisions of firms abroad positively.

Following general form for the output equation the following summarizes our theoretical considerations:

GDPBV $=\mathrm{f}_{9}(\mathrm{WSSE}$, ELEFFU, PGDPB, FDDV, XGSV, MGSV)

In addition to the previously discussed variables we introduced WSSE to represent labor costs. This is in accordance with the suggested formulation of the production cost effect in the OECD-INTERLINK model. The price index PGDPB was also included which is as a determinant of output self-explanatory. To estimate parameter values for each variable in (5.11) with OLS is, however, due to insufficient data (12 observations) an impossible task. In addition it turned out that some data prior to 1994 were too bad and couldn't be used at all for estimation of the output equation. Therefore, the parameters to be estimated had to be reduced. To accomplish that without giving up too much of the theoretical content of our approach, we came up with the following general form of the output equation:

$$
\begin{equation*}
\text { GDPV }=\mathrm{f}_{9}(\mathrm{WSSE} / \mathrm{PGDP} / \mathrm{ELEFFU},(\text { FDDV+XGSV-MGSV }) \tag{5.12}
\end{equation*}
$$

Where the first variable is the efficiency real wage a major determinant of production costs while the second term captures aggregate (domestic and foreign) demand.

The following is the calibrated equation:

$$
\begin{align*}
& \text { GDPBV }=\text { EXP(7.153939065 - XTAU * LOG(WSSE / PGDPB / } \tag{5.13}\\
& \text { ELEFFU }+0.8096641143 * \text { LOG(FDDV }+ \text { XGSV }-\mathrm{MGSV})+ \\
& 0.02891037751 * \text { DUMMY_98_00_01) }
\end{align*}
$$

As can be seen from Figure 5.3, also the forecasting ability of the output equation appears to be quite satisfactory, considering the short time series available for calibration.

Fig. 5.3: \quad Forecast of output (GDPBV)

5.4 Wages and prices

The formulation of the wage equation relies on the theoretical base applied in the OECDINTERLINK model. The compensation rate of the business sector WSSE, defined as the total annual wages per employee in this sector, is assumed to be determined in a bargaining framework. According to the theory of bargaining, there are three factors at least, which play a dominant role in the wage setting process. The first factor, which affects nominal wages, is the price level. This is so, because both firms and workers do not care so much about nominal wages, but about real wages. Workers want to secure their living standard and will therefore try to receive a rise in wages at the inflation rate at least because this leaves their real wages unchanged. In the same way, employers will agree to pay higher wages, if the price of their products increases by the same amount. Therefore the consumption price index PCP is the first determinant of our wage equation for the business sector.

The second explanatory variable affecting wages is the unemployment rate UNR, which represents the bargaining power the workers have or the prevailing labor-market conditions. At low unemployment rates, workers are in a stronger bargaining position, thereby exerting higher pressure on nominal wages. In short, lower unemployment rates will lead to higher
wages. Finally, evidence suggests that wages also depend on the trend of productivity. If productivity increases, workers and employers will reflect this in the bargained wage according to their relative bargaining power. Thus, as third explanatory variable the trend of labor productivity in the business sector, PROD, is included in the wage equation, which now becomes:

$$
\begin{equation*}
\operatorname{logWSSE}=\mathrm{c}_{1}+\mathrm{c}_{2} \log \mathrm{PCP}+\log \mathrm{PROD}+\mathrm{c}_{3} \mathrm{UNR}_{-1} \tag{5.14}
\end{equation*}
$$

The estimation results obtained with data for the period 1992-2003 are as follows:

$$
\begin{align*}
& \text { WSSE }=\operatorname{EXP}(6.79515674+\text { XTAU } * \text { LOG(ELEFFU })+\text { LOG(PCP) }- \tag{5.15}\\
& \left.0.09506299279 *\left(D U M M Y _99 _00\right)\right)
\end{align*}
$$

In the estimation we proxied labor productivity by Total Factor Productivity. As was derived earlier ELEFFU ${ }^{\text {XTAU }}$ is TFP. The message of the estimated equation is that in the long run TFP growth rate determines wage growth. The sensitivity of wages to the unemployment rate, the Phillips-curve effect, is very low, indicating only a minor role of labor market conditions in nominal wage bargaining. A relative low effect of the unemployment rate on wages is also obtained in other studies, e.g., by Cserháti and Varga (2000) for Hungary, Christodoulakis and Kalyvitis (1998) for Greece, and "imposed" by Bradley, Morgenroth and Untiedt (2001) in their wage equation of the manufacturing sector for East Germany on the basis of comparisons with Ireland. The unity coefficient of the consumer price index is completely in accordance with theoretical considerations.

Historical data is explained quite satisfactorily by the calibrated wage equation, as can be seen from Figure 5.4.

Fig. 5.4: \quad Forecast of wages (WSSE)

The derivation of an equation for the pricing behavior of the business sector draws on the corresponding modeling in Turner, Richardson, Rauffet (1996). The output price PGDPB depends on production costs and costs depend on the nature of the production function. When deriving the factor demand equations in section 5.2 we assumed, that firms produce outputusing capital and labor as factor inputs according to the production function in (5.4). This function takes also into account labor efficiency, ELEFFU, (or total factor productivity TFP) as a factor of production, explicitly. Theory of the firms tells us, that marginal cost of production is equal to unit capital-labor costs CKL, as derived in section 5.3. And if there were perfect competition, this would be equal to the price of output, PGDPB. But because the goods markets are not competitive, a higher price than unit capital-labor costs is charged. To capture this fact it is assumed that the price for business output is set according to the equation:

$$
\begin{equation*}
\log \mathrm{PGDPB}=\mathrm{c}_{1}+\mathrm{c}_{2} \log \mathrm{CKL}+\mathrm{c}_{3} \log \text { PGDPB }_{-1} \tag{5.16}
\end{equation*}
$$

where the parameter c_{2} captures the strength of the effect of unit capital-labor costs on prices, which depends on the extent that the goods markets are competitive and the firms have market
power. In (5.12), by the one period lagged endogenous variable sluggish adjustment of the price level to its equilibrium value shall be taken into account.

This approach for price determination is in full accordance with supply side theory followed so far when deriving the factor demands and output equation. In contrast to other models also capital costs and not only wages are considered as determinant of prices. In addition, ELEFFU or total factor productivity is included and in that way a further channel created, through which CSF measures can affect directly the supply side: an increase in ELEFFU due to investments in human resources, e.g., decreases production costs (see equation (5.12)), dampens price increases and improves competition.

A major advantage of our approach is that, in comparison to the included variables, only a smaller number of coefficients have to be calibrated with the limited data. The estimation results are as follows:

$$
\begin{align*}
& \text { PGDPB }=\text { EXP(-2.184324816 + 0.3752619755 * LOG(CKL) }+ \tag{5.17}\\
& (1-0.3752619755) * \operatorname{LOG}(\operatorname{PGDPB}(-1))+0.05440570567 * \\
& \text { DUMMY_96_97-0.05222860349 * DUMMY_99) }
\end{align*}
$$

Fig. 5.5: \quad Forecast of prices (PGDPB)

The deflators for private consumption, PCP and private investment, PIT were modeled as the weighted average of the price for business output and import prices in the long run. See for the calibration results and the modeling of the remaining deflators the equation system listing in the appendix.

5.5 Labor supply

Labor force is estimated according to the following equation:

$$
\begin{align*}
& \mathrm{LF}=\mathrm{POPT} *(0.1254955234+0.8184106563 *(\operatorname{LF}(-1) / \text { POPT(-1)) }+ \tag{5.18}\\
& 0.1884826701 * \operatorname{LOG}(\text { ETB } / \mathrm{ETB}(-1))-0.00263766064 * \operatorname{UNR}(-1))
\end{align*}
$$

As can be seen from Figure 5.6 the estimated LF equation, delivers an excellent forecast of the labor force with relative residuals of less than a half percent in each year of the observation period.

Forecast: LFF
Actual: LF
Forecast sample: 19922003
Included observations: 12

Root Mean Squared Error	20.29329
Mean Absolute Error	16.99619
Mean Abs. Percent Error	0.407575
Theil Inequality Coefficient	0.002446
\quad Bias Proportion	0.028669
Variance Proportion	0.007881
Covariance Proportion	0.963450

Fig. 5.6: \quad Forecast of the labor force (LF)

5.6 Final demand

The derivation of a function for private consumption is based on a relationship between consumption CPV and household real disposable income YDRH that is one of proportionality:

$$
\begin{equation*}
\mathrm{CPV}=\beta \mathrm{YDRH} \tag{5.19}
\end{equation*}
$$

In this relationship the elasticity of consumption with respect to income is unity and β the average propensity to consume. The latter might not be a constant and consumption is likely to respond less than one for one to fluctuations in current income. E.g., if the economy experiences a rapid increase in income, private consumption is unlikely to increase by as much. Hence β will fall as the growth rate in income rises. This relationship has, in fact, been observed empirically: countries with higher economic growth rates do tend to have lower average propensity to consume (Thomas 1997, 386). Therefore, one determinant of β is the growth rate of YDRH, where a negative sign for its effect on the propensity to consume is expected.

Other decisive determinants suggested in recent research work are wealth and interest rates (see Mankiw 2003, Chapter 16). Because of lack of data, wealth cannot be taken into account. From interest rates, which can be represented by the variable IRL, two counteracting effects on the propensity to consume are expected (Franz, Göggelmann, Winker 1998): a negative substitution effect, because high interest rates favor consumption in the future in relation to present consumption, and a positive income effect, resulting from the interest returns from wealth.

These theoretical considerations and after some experimentations with data and mathematical forms the equation for private consumption was formulated as follows:

$$
\begin{align*}
\log \mathrm{CPV} & =\mathrm{c}_{1}+\mathrm{c}_{2} \log \mathrm{YDRH}+\mathrm{c}_{3} \log \left(\mathrm{YDRH}^{2} \mathrm{YDRH}_{-1}\right)+\mathrm{c}_{4} \text { IRL } \tag{5.20}\\
& \left.+\mathrm{c}_{5} \text { DUMMY94 }^{2}+\mathrm{c}_{6} \log \left(\mathrm{CPV}_{-1} / \mathrm{YDRH}_{-1}\right)\right)
\end{align*}
$$

In addition to the discussed variables the average propensity to consume of the pre- period has been included, to allow for lagged adjustment in consumption behavior, and a dummy variable as well to take into account a structural break in consumption expenditure observed in 1994.

The results for this calibration are shown in equation 5.22. All coefficients have the theoretical expected signs, where the parameter value connected with the interest rate indicates that the negative substitution effect on consumption outweighs the positive income effect. Not surprisingly and in accordance with other studies the overall effect is however rather low.

$$
\begin{align*}
& \mathrm{CPV}=\mathrm{YDRH} * \operatorname{EXP}(0.067187+0.745648 * \operatorname{LOG}(\mathrm{CPV}(-1) / \mathrm{YDRH}(-1)) \tag{5.21}\\
& -0.588445 * \operatorname{LOG}(\mathrm{YDRH} / \mathrm{YDRH}(-1))-0.005051 * \operatorname{IRL}+0.02838 * \\
& \text { DUMMY94) }
\end{align*}
$$

Figure 5.7 demonstrates the nearly perfect performance of the calibrated consumption function against historical data.

Fig. 5.7: \quad Forecast of private final consumption (CPV)

With the consumption function about 50 percent of total final demand is explained. Another 21 percent fall to business investment IPV, which was modeled jointly with the employment function in section 5.2. Government final consumption and investment are treated as exogenous in our model or follow developments in the business sector or the total economy. What remains to be explained from final demand are therefore exports and imports. They are not modeled separately here but their difference instead, the net exports of goods and services FBGSV, as follows:
FBGSV = GDPV - TDDV

GDPV denotes real gross domestic product and TDDV contains all components of real final domestic expenditure ${ }^{17}$. A similar equation as (5.22) is formulated for net exports in nominal terms.

[^13]
5.7 Income distribution and government

In this block of the model the redistribution of factor incomes through transfers, taxes and the social security system between the private and government sectors is explained. We drew in the modeling of this block mainly on the OECD-INTERLINK models.

Only the current transfers received by households, TRRH, is modeled econometrically as follows:

$$
\begin{equation*}
\mathrm{TRRH}_{-\mathrm{TRRH}_{-1}}=0.456(\mathrm{WSSE} \cdot \mathrm{UN}) \tag{5.23}
\end{equation*}
$$

where WSSE is the compensation per employee in the business sector and UN total employment. Linking them by means of „rates" to their appropriate base endogenizes other variables. E.g., direct taxes on households, TYH, and on business, TYB, are explained by:

$$
\begin{equation*}
\mathrm{TYH}=\left(\mathrm{TYH}_{-1} / \mathrm{YRH}_{-1}\right) \cdot \mathrm{YRH} \tag{5.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { TYB }=\left(\text { TYB }_{-1} / \mathrm{PROF}_{-1}\right) \cdot \mathrm{PROF} \tag{5.25}
\end{equation*}
$$

YRH and PROF denote current receipts of household's respective business profits. In a similar way social security payments are modeled, e.g. the employees and self-employed contributions to social security as:

$$
\begin{gather*}
\text { TRPESH }=\left(\text { TRPESH }_{-1} /\left(\text { WAGE }_{-1}-\text { WAGEG }_{-1}+\text { YSE }_{-1}\right)\right) \tag{5.26}\\
\cdot(\text { WAGE }- \text { WAGEG }+\mathrm{YSE})
\end{gather*}
$$

where WAGE and WAGEG denote wages of the total economy and government sector, respectively, and YSE, the self-employment income received by households, is itself indexed to the compensation rate of the business sector, WSSE, and the self-employed, ES, by way of

$$
\begin{equation*}
\mathrm{YSE}=\left(\mathrm{YSE}_{-1} /\left(\mathrm{ES}_{-1} \cdot \mathrm{WSSE}_{-1}\right)\right)(\mathrm{ES} \cdot \mathrm{WSSE}) \tag{5.27}
\end{equation*}
$$

We hold on this kind of modeling later when performing forecasts and simulations with the model for future periods. By doing so the respective "rates" are set to their values of the last historical year, 2001, and held fixed over the forecasting period.

5.8 Modelling sectoral values

To simulate investment, employment and output at the level of the three business sectors (agriculture, industry, services) we followed a combined top-down-bottom-up approach. This means that annual change of aggregate employment and investment is generated at the macro model then the sectoral values are calculated in the SCGE sub-model for regions. Aggretion from the regional to the macro level provides the macro sectoral values of investment, labor and output. For sectoral wages (that are not calculated in the SCGE model and are available at the macro level.) we followed a different approach. A top-down approach was taken as in the sectoral wages equations values are driven by the aggregate wage.

5.9 CSF Policy variables ${ }^{18}$

On the demand side CSF expenditure going on investment in basic infrastructure and expenditures not expected to exert supply side effects at least in the medium term (such as environmental investments) enter the model through an additive term BIV in the equation that describes government fixed capital formation:
(5.28) $\mathrm{IGV}=\mathrm{IG} / \mathrm{PIT}+\mathrm{BIV}$

[^14]Expenditure on education/training and research and development, HUMRES are treated as an income transfer to private households, exerting a demand shock through an additive factor in the equation for household disposable income:
(5.29) $\mathrm{YDH}=\mathrm{YRH}-\mathrm{TYH}-\mathrm{TRPH}+($ HUMRES $)$

Regarding the aids for productive structures or investments, PEV, it is assumed that they are granted as an investment tax credit whose rate G1 is expressed as percentage of private investment, IPV:

$$
\begin{equation*}
\mathrm{G} 1=\mathrm{PEV} / \mathrm{IPV} \tag{5.30}
\end{equation*}
$$

The investment tax credit reduces the user costs of capital, UCC, by G1 percent:
(5.40) UCC $=(\mathrm{UCC}$ _ELEFFU $/$ PIT_ELEFFU $) *$ PIT $*(1-\mathrm{G} 1)$
where PIT is deflator of gross total fixed capital formation. The user cost of capital variable is a main determinant of business investment demand. Thus, the supports for the productive environment are introduced into the model via the investment function: UCC is reduced by the financial supports, thus increasing investment demand in the business sector and output from the demand side.

But the user cost of capital enters also several other equations on the supply side of the model. Besides wages it enters the labor demand function, thus affecting employment in the business sector. In addition, it is amalgamated with wages into the unit capital-labor cost variable (CKL), one of the key variables in the model, which has important effects on the output supply in the business sector and enters also directly and indirectly all price equations of the model. Therefore it is difficult if not impossible to study with the model the supply side
effects of the user costs of capital and thus of the CSF supports for productive structures separately from their demand side effects. We will come back to this point again when the scenario results are presented.

The demand side impacts of a change in the policy variables can be quite different, depending on the multipliers associated with the payments of the various CSF investment programs. Besides, it must be taken into account that these multipliers are dynamic insofar as their values change in time.

In contrast to financial supports going on investment in productive structures the supply side effects of all other CSF interventions are introduced into the model by way of a function explaining the Total Factor Productivity. This effect is treated in more details in the following chapter.

6. Integrating regional and macro levels in the complex model: Structure, mechanisms of CSF impacts and model properties

6.1 Model structure

The complex macro-regional model is designed for development policy analysis and not for forecasting. It is an extension of a macro model originally developed in Germany (Schalk and Untiedt 2000). The first step to make this model suitable for impact analysis of TFP-related CSF instruments was done while EcoRET was developed (Schalk and Varga 2004). In EcoRET these effects were modeled in a static geographic setting. This means that with EcoRET short run effects of CSF interventions on regional and macro TFP are estimated and then these are channeled to a macroeconomic framework. With the current extension (called GMR - Geographic Macro and Regional model) it is possible to estimate the long run dynamic geographic effects by way of integrating an SCGE model, RAEM-Light (Koike and Thissen 2005) into the framework. By dynamic effects we mean following the changes in the geographic structure of the economy initialized by CSF interventions. As such, migration of labor and capital is incorporated in the model. The previous sections outlined the sub-models in details. In this section the model structure is explained. To do this first the main sub-model characteristics are underlined again and then the complex system is introduced. Only CSF effects related to the geography of TFP are described in this chapter. Other effects such as the impact of investment support and demand side influences of interventions are already described in previous sections.

6.1.1 Main sub-model characteristics

A. The TFP sub-model

The TFP equation (equation 3.1) is placed to the center of this sub-model. This equation estimates the effects of geographically differently located knowledge sources (local, national, international) as well as the impact of specific CSF instruments (human capital, infrastructure) on TFP growth rate. The equation is estimated on a space-time data set. It is used to generate static agglomeration effects (direct short-run effects on TFP levels in each region) as a result of CSF interventions. Macro level static and dynamic TFP changes are also calculated in the TFP sub-model.

B. The SCGE sub-model

The reason this sub-model is integrated into the framework of GMR is to make it suitable for studying the longer run spatial effects of the schocks CSF intervention exerts on the economy. This model is calibrated in a way that without interventions it represents a full spatial equilibrium of the economy (both regionally and interregionally). This basically means that no migration of labor and capital is assumed as there are no differences across regions in utility levels. CSF-related schoks interrupt this state of equilibrium and the model describes the gradual process towards a new full spatial equilibrium. As such this model predicts the likely dynamic agglomeration effects. Compared to static effects (estimated by way of the TFP equation) dynamic spatial effects incorporate changes in the spatial structure of the economy resulting from CSF-interventions followed by labor and capital migration.

Changes in the geographic structure are determined by the relative weights of centrifugal (changes in local knowledge measured by TFP) and centripetal (transport cost, congestion) forces. Agglomeration plays its role right in the beginning of the process as the change in TFP in any region depends both on the size of support and on employment (which is a crude measure of agglomeration externalities in technological change) already in the region (static agglomeration effects). Agglomeration forces are also present in later stages of the dynamic process. This happens not only because of the fact that interregional differences in TFP determine the intensity of migration but also because the intensity of migration further reinforces these differences. The strength of this cumulative process depends first on the propensity of labor to migrate and second on the importance of negative agglomeration externalities.

As a result the SCGE sub-model calculates dynamic regional TFP changes and values of output, employment, investment and wages at the level of counties. It might seem paradoxical but despite it describes the dynamism of the spatial structure this sub-model does not incorporate all the forces necessary to build a full spatio-temporal system. Crucial elements of this dynamism such as changes in technology, employment and capital are exogenous in the system. These effects are formulated in the MACRO sub-model.

C. The MACRO sub-model

Based on dynamic TFP effects (calculated by the TFP and the SCGE sub-models) the MACRO sub-model estimates the likely macroeconomic effects on several variables such as the level and growth of output, investment, employment, wages, unemployment, inflation and so one. The MACRO sub-model provides a complete picture of the macro economy with supply, demand and income distribution blocks included. This model is estimated as an aspatial system. As such it incorporates agglomeration forces in estimation as they are present in macro data but studying the effects of their changes is out of its possibilities. The results bear spatial features only because of its extension with the TFP and SCGE sub-models. The MACRO baseline describes the economy assuming no CSF-interventions occur. As such it is built on the proposition that the spatial structure of the economy does not change compared to the period of estimation. With policy simulations the effects of TFP-related (infrastructure and human capital) and not directly TFP-related (investment support) instruments are estimated.

6.1.2 The structure of the complex model

Fig. 6.1 describes the way the different sub-models are interrelated in the complex system. Following this figure the current section explains the model structure in details.

Step 1: the monetary value of TFP-related CSF instruments (human capital support, infrastructure investments) enter the TFP equation (eqution 3.1) to calculate static changes in TFP growth rates for each county and for each year.

Step 2: Equations 4.1 and 4.2 channel the static changes in TFP growth rate into the SCGE model to estimate long run dynamic spatial effects. Determined by positive agglomeration effects (regional changes in TFP) and negative agglomeration forces (transport costs, congestion in the housing market) the SCGE sub-model calculates the values of TFP, output, investment, employment and wages for each county for the whole period of intervention.

Step 3: Dynamic TFP levels for each year enter the TFP sub-model to calculate national TFP growth rate changes. The way to calculate these first include calculation of national TFP levels as weighted averages of regional TFP levels (where county employment is used for

Fig 6.1: Regional and national level short run and long run effects of TFP changes induced by development policy scenarios
weighting to incorporate agglomeration effects). As referred to earlier this procedure ends up with a precise estimate of national TFP. Then national TFP growth changes are calculetd from TFP levels and these values channel into the macro model with the help of the following equation:

6.1 CSFTFP $=\operatorname{ELEFFU}^{\alpha} e^{\text {DNTFPGR }}=e^{\alpha \cdot \lambda \text { TIME }} e^{\text {DNTFPGR }}$

where $\alpha \cdot \lambda$ is the national growth rate of TFP as estimated by the macro-model and DNTFPGR is its change resulting from CSF interventions. Thus, CSFTFP is the level of Total Factor Productivity at each point in time due to CSF policies and other factors. 6.1 is the key equation in linking the dynamic regional models (TFP and SCGE sub-models) of technological change to the macroeconomic sub-model.

Step 4: The simulated new national TFP value in equation 6.1 channels productivity change induced by CSF interventions into the macroeconometric sub-model as the variable TFP feeds directly or indirectly into several equations of the system, as depicted in the Appendix.

Step 5: As a result of CSF interventions channeled by dynamic TFP changes, demand side effects and investment support (the latters are not detailed here) employment and investment changes are estimated in the macro model. As underlined earlier the SCGE model takes changes in technology, labor and capital exogenous. For consistency of the system changes in employment and investment generated in the MACRO sub-model enter the SCGE sub-model to calculate the final spatial distribution of labor, investment, wages and output. This was necessary as the SCGE model part does not provide an endogenous approach for employment and investment growth.

Steps 6 and 7: The complex model system provides the effects of CSF interventions in the form of percentage differences to the baseline (i.e., the state of affairs without policy impacts) both at the regional level (output, investment, employment, wages) and at the macro level (output, employment, investment, wages, unemployment, inflation rate, productivity etc.).

6.2 The mechanisms of the impacts of geographically modeled CSF interventions

A. Infrastructure, $R \& D$ and education support

A. 1 Regional effects

Resulting from development policy interventions changes in regional TFP affect regional level equilibrium values (output, employment, investment etc.) both in the short run (in the same year) as well as in the longer run (during the coming years). As such one time changes could generate a cumulative long run process. This process is detailed more concretely in the following steps:
i. Assuming that the intervention occurs in any $i^{\text {th }}$ region (where i can of course be more than one region), the change in $\mathrm{A}^{\text {, }}{ }^{\mathrm{m}}$ (i.e., regional TFP level in the $\mathrm{m}^{\text {th }}$ sector) generates the following effects in the short run: f.o.b price of the good
decreases that induces a decrease in the demand for both L and K (assuming y unchanged). At the same time the effect of price change on interregional trade $\left(\mathrm{z}_{\mathrm{i}, \mathrm{j}}\right)$ is positive as well as the impact on output $\left(\mathrm{y}_{\mathrm{i}}^{\mathrm{m}}\right)$ resulting in an increase in the demand for K and L (output effect) ${ }^{19}$. Additionally, the decline in $\mathrm{p}_{\mathrm{i}}{ }^{\mathrm{m}}$ inducing an increase in regional demand $\left(\mathrm{x}_{\mathrm{i}}{ }^{\mathrm{m}}, \mathrm{h}_{\mathrm{i}}\right)$ results in higher utility levels at location i .
ii. Interregional restructuring in utility levels is followed by labor migration in the next period (next year). There is also an effect on the interregional re-allocation of capital. Labor movement results in changes in regional productivity in the longer run (dynamic agglomeration effects).
iii. Changes of TFP levels induce a longer run cumulative causation process invoking changes in the geographical structure of the whole economy.

A. 2 Macroeconomic effects

Following the process described under i and ii TFP growth rate changes are calculated for each time period. These values are channeled into the macro sub-model according to equation 6.1.
B. Regional and macroeconomic mechanisms of changing transportation costs (resulting from highway and railway investments)

Infrastructure support described under 6.1 decreases production costs through increasing TFP. This impact works via the TFP sub-model. However, infrastructure investment support has an effect on interregional trade of outputs and this effect is modeled by the SCGE sub-model. Consequently the modeling system describes both the input and the output side effects of infrastructure development. The output side effect is modeled by the transportation markup rate parameter $\mathrm{t}_{\mathrm{i}, \mathrm{j}}$. The mechanisms work as follows in the SCGE sub-model.

[^15]
B. 1 Regional effects

Via decreasing prices a decline in $\mathrm{t}_{\mathrm{i}, \mathrm{j}}$ increases interregional trade between regions i and j and also the demand for K and L . The increase in demand for L is followed by increasing utilities in the given region. Changing labor demand paired with a relative restructuring in interregional utility differences induces labor migration causing changes in regional equilibrium values (production, employment etc) as well as regional TFP levels (agglomeration effect).

B.2. Macroeconomic effects

Regional changes in TFP growth rates are calculated for each time period and these changes feed into the macroeconomic sub-model by equation 6.1.

6.3 Model properties

The structure of the complex model was outlined in the previous section. Several questions can be raised as to the properties of the complex model. We classify these issues into two sets: the first one is related to the consistency of the complex model whereas the second one is to sensitivity of model results to certain exogenous changes ${ }^{20}$.

6.3.1 Model consistency

Despite that the two main components of the complex model (EcoRET and RAEM-Light) are developed separately from each other, several features (such as the application of a CobbDouglas production function, cost minimization by firms, a strong supply side orientation, modeling technology by way of TFP, the realization of the importance of agglomeration externalities) suggests that reaching internal consinstency in the complex model is a realistic possibility. The clear division of labor between the three sub-models outlined in the previous sections also suggests a consistent structure. However there are some important issues that are

[^16]not automatically solved by model assumptions and need original solutions. These are related to those parts of the model where the main elements are being connected together. As such, the following areas emerge:

1. Channeling TFP growth rate changes into the SCGE sub-model;
2. Harmonizing national level employment and investment changes between the MACRO and the SCGE sub-models;
3. Harmonizing changes of output between the MACRO and the SCGE sub-models.
4. With respect to the first issue it is assumed that TFP grows exogenously both in the SCGE as well as in the MACRO sub-models by the average rate of growth experienced from the second half of the 1990's and this growth rate is altered by CSF interventions. This is a suitable assumption as the interest of the modeling work is not in forecasting but in impact analysis. Change of TFP generated in equation 3.1 enters the SCGE sub-model as a schock via equation 4.2. This increases TFP for each individual region according to the extent of intervention and then channels into the MACRO sub-model by way of equation 6.1.
5. For the second issue to be resolved we ended up with the solution that the SCGE model is being run two times during each simulation. In the first time it generates dynamic TFP levels for each region and after estimating national level changes in the TFP sub-model the effects on macro variables are calculated in the MACRO block (steps 3 and 4 in Fig 3.1). However, since aggregate changes in employment and investment are not explained in the SCGE submodel these should come from outside of it. To ensure internal consistency of the model it is decided to apply changes in the two variables in SCGE as they are estimated in the MACRO sub-model. It caused some technical problems to resolve, however at the end it appeared to be a fully viable solution. As a result, after the second run of the SCGE sub-model (step 5 in Fig 3.1) there is a full consistency between the MACRO and SCGE model parts with respect to employment and investment changes. These changes resulted from changes in TFP (generated in the TFP and SCGE sub-models) and being related to several other variables in the MACRO sub-model on the one hand whereas spatial distribution of the change in employment and investment is calculated in the SCGE sub-model on the other.

Even the treatment of labor market in the the full neoclassical regional model and the macro model (that incorporates Keynesian demand side elements as well) do not show
inconsistencies anymore in the complex model. The function of the SCGE model is to calculate the spatial distribution of employment that is estimated in the MACRO. This does not mean that full employment is assumed in the regional model. Its function is to provide the geographic counterpart of any levels of aggregate employment no matter how high the rate of unemployment in the economy is.

Despite that the linkages among TFP-SCGE-MACRO-SCGE represent a logical construct for employment and investment one issue still remained that could potentially harm internal consistency in this respect. This is related to the fact that TFP level is partly determined by agglomeration (Equation 2-b in Appendix 3). Is it not a realistic possibility that the resulting change in employment increases aggregate TFP levels significantly in the SCGE-TFP submodels after running SCGE for the second time? In other words: should not we run the MACRO model again after the second run of SCGE? This way we would introduce a potentially long iterative process among TFP-SCGE-MACRO that was not expected originally.

It has been emphasized earlier that the SCGE sub-model is a static construction and dynamisms in employment and investment are brought into the system from the MACRO sub-model. The model has a "short memory" meaning that in any simulation during the first run of the SCGE model changes in employment and investment from one year to the other are the ones calculated earlier in the simulation that was run last time before. In the second run of the SCGE sub-model these changes are corrected by the respective values from the MACRO sub-model. However in extreme situations this technique might be the source of incorrect results. This is illustrated below.

In order to learn the properties of the complex model with respect to the effect of employment change on TFP growth rate we run several simulations and calculated elasticities for different geographical distributions of CSF instruments ${ }^{21}$. These computations are summarized in the following matrix.

[^17]| | EQ | BP conc | NFH | Bp 25\% | Bp 10\% | Bp 15\% |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| EQ | 0,00 | $\mathbf{1 8 , 5 5}$ | $-0,09$ | 0,38 | 0,01 | 0,07 |
| BP conc | $\mathbf{- 7 , 6 7}$ | $\mathbf{0 , 0 0}$ | $\mathbf{- 7 , 7 1}$ | $\mathbf{- 7 , 5 1}$ | $\mathbf{- 7 , 6 6}$ | $\mathbf{- 7 , 6 4}$ |
| NFH | 0,09 | $\mathbf{1 8 , 7 7}$ | 0,00 | 0,48 | 0,10 | 0,17 |
| Bp 25\% | $-0,37$ | $\mathbf{1 7 , 6 5}$ | $-0,46$ | 0,00 | $-0,37$ | $-0,30$ |
| Bp 10\% | $-0,01$ | $\mathbf{1 8 , 5 3}$ | $-0,10$ | 0,38 | 0,00 | 0,06 |
| Bp 15\% | $-0,07$ | $\mathbf{1 8 , 3 8}$ | $-0,16$ | 0,31 | $-0,06$ | 0,00 |

EQ stands for equal spatial distribution of funds, NFH is the structure suggested by the National Development Office (more details are given in the next chapter in this respect), BP conc is the scenario when all the expenditures are concentrated in Budapest (a not realistic, but analytically interesting situation), $\mathrm{Bp} 10 \%, 15 \%$ and 25% are the respective shares spent in Budapest whereas the rest of the funds are equally distributed across the 19 remaining counties.

The matrix should be read from the first column. To have an example: the elasticity of 18.55 means that a one percent change in employment at the national level (generated by the MACRO sub-model) results in an 18.55 percent increase in national level TFP if a scenario of equal distribution of funds across regions is followed by Budapest concentration. It is clear from the matrix that as spatial concentration of funds increases the effect of employment change on TFP level increases as well. However this effect becomes strong only in the extreme scenario when Budapest gets all the CSF support. Even for the case of a 25 percent Budapest support (which does not seem to be realistic either) the elasticity value remains significantly below 1 .

The message of the above simulations is clear. The TFP effect of employment change is severe only if concentration patterns change drastically: from even distribution to Budapest concentration or to a 25 percent concentration in the capital. In realistic analyses changes in national level employment does not change the spatial distribution of labor so drastically considering the relatively low level of migration across counties. Even a large increase in employment does not change the spatial pattern of labor drastically because of the relative stickiness of labor in space. Additionally, employment effects of CSF interventions are not strong as will be shown in the next chapter. Consequently we should not expect such
significant changes in TFP at the national level that require the calculation of new results for the macro variables.
3. The remaining issue to resolve is the consistency of output estimates between the SCGE and MACRO model parts. Given that both sub-models employ a Cobb-Douglas production function and also both of them are built on the principle of cost minimization together with the facts that TFP, investment and employment grow at the same aggregate rate in each model parts consistency in this respect seems to be a likely feature. However, for a more precise knowledge of model properties we get into this issue in much more details.

Tab. 6.1: Comparison of CSF effects on GDP: MACRO and SCGE model results (in 1995 HUF)

Year	GDP		GDP Predicted: MACRO		GDP Predicted: SCGE		$\begin{aligned} & \text { MACRO GDP in SCGE } \\ & \text { Units } \end{aligned}$	
	MACRO	SCGE	Value	\% Predicted	Value	\% Predicted	Value	\% of SCGE GDP
2008	9722645	15652027	9258690	95	15467422	99	16242498	104
2009	10141090	16939266	9727182	96	16176763	95	16865112	100
2010	10558940	18374617	10145129	96	17406437	95	18116431	99
2011	10966070	19753408	10562274	96	18760297	95	19477502	99
2012	11360030	21149205	10968509	97	20035492	95	20750659	98
2013	11750510	22623236	11361576	97	21328036	94	22058146	97
Mean				96		95		99

Note: The table follows the structure of CSF expenditures presented in details in chapter 7 in this report.

The main difficulty in comparing SCGE and MACRO results for output is that the two submodels measure output (and also employment and investment) in different units. ${ }^{22}$ The first two columns of Tab. 6.1 list estimated national level output values (resulted from the scenario that is detailed in the next chapter) at MACRO and SCGE. Because of different units used the two columns are incomparable. However to relate the two to each other we calculated predicted MACRO and SCGE values of output using the vintage capital production function originally applied only in the MACRO sub-model. The same change in labor and capital at the aggregate level, combined with the same level of TFP for both models resulted in two predictions for changes in GDP at MACRO and SCGE. By adding these changes to previous year GDP the new levels of output are calculated.

[^18]Both GDP predictions show some errors of similar size. The error in MACRO comes from the fact that output is generated by a separate output function that incorporates both supply and demand effects (equation 5.13) and not by the vintage capital production function directly. On the other hand error in the SCGE model is explained by the bias in estimating aggregate TFP level from regional productivity by way of averaging it. The error increases as inequalities in TFP levels increases (resulting from wider spatial inequaities of the distribution of CSF support).

Results in Tab. 6.1 suggest the following solution. Given that the ratios between SCGE and MACRO investment and employment are the same because of the same growth of labor and investment in both sub-models and also the same TFP level is used in both calculations correcting for the error occuring in MACRO in the respective SCGE calculation results in the „true" MACRO GDP in SCGE units. ${ }^{23}$ As shown in the last column the resulting average percentage of predicting output in SCGE units in MACRO is almost 100. This is an evidence for the consistency between the two sub-models as to the estimation of aggregate output.

However, there is an increasing distortion between SCGE and MACRO outputs as the spatial inequality in TFP increases. This is because of the bias in the averaging process to get national TFP from regional values already detailed above. However, after a closer look at this issue distortion does not appear serious in real-word simulations. To show it some simulations were run with different spatial distributions of support. The size of distortion is measured by the mean absolute percentage error (MAPE) of predicting SCGE output by MACRO. This value is 1.90 if CSF funds are distributed according to the scenario suggested by the National Development Office (and treated in details in the next chapter). MAPE is 2.93 if Budapest gets 10 percent of total CSF funding whereas the respective values are 3.57 and 4.23 in case the share of the capital is 15 and 20 percents and the rest of the support is equally distributed among the 19 remaining counties. Thus even the quite unrealistic 15 and 20 percent distributions to Budapest result in a less than 5 percent MAPE that is not considered serious according to daily statistical experience.

[^19]
6.3.2 Model sensitivity: Exogenous changes in technology, CSF support and parameters

In this section the behaviour of the model system to three types of exogenous changes are studied: changes related to Total Factor Productivity; the potential effects of expectations; the likely effects of changes in parameter values of some additional equations besides the ones covered in the previous two points. Additional to these issues the linearity of the system is examined. Results are reported in Tab. 6.2.

Regarding the first types of analyses results suggests that neither a change in the long run TFP growth rate nor changes in the coefficients of the policy variables in the TFP function exert major inpacts on any of the main endogenous variables. This is indicated by the low elasticity values in the table.

The second issue is the potential role of expectations. Although modeling the likely effects of changing expectations of economic actors is a difficult task first because formulating it alone requires specific approaches not necessary part of the toolbox of macroeconomic modeling and second because endogenizing expectations need long time series (much longer than this project is capable to build on) it is an interesting exercise. After searching through all the equations potentially related to expectations we ended up with the private consumption function as the most likely object of such an analysis. We focused on two variables such as the future change of disposable income (YDRH/YDRH(-1)) and the future interest rate (IRL). As detailed above it is found in the macro model that consumption increase remains below the increase of disposable income (as indicated by the negative sign of the change of disposable income variable) and substitution effects dominate in the intertemporal distribution of consumption as suggested by the negative sign of the interest rate variable.

To play around with the potential role of expectations a bit two potential effects of CSF interventions are formulated. First one possible outcome could be that consumers expect increasing burden in the future as increasing government expenditures could potentially result in higher tax rates. This might decrease the propensity to consume. It is indicated in our model with a higher negative value of the coefficient of the disposable income change variable. The other likely effect is increasing interest rates in the future that increase the substitution effect resulting in a higher negative value of the coefficient of IRL.

Tab. 6.2: Sensitivity analyses results: elasticity of main endogenous variables with respect to exogenous changes
GDPV DGDPV CPV ITV ET UNR LFPR DWSSE DPDTY PROD CKL ULCB DPGDP NLGQ

1. TFP related analyses

Long run TFP growth rate	-0,07	-0,06	-0,08	-0,04	-0,05	-0,06	-0,04	-0,06	-0,09	-0,10	-0,07	-0,15	-0,08	-0,05
TFP: D(INFRAV(-1))	0,33	0,73	0,37	0,24	0,30	0,49	0,26	0,24	0,46	0,46	0,35	0,85	0,43	0,27
TFP: D(EDRDXV(-2))	0,36	0,65	0,38	0,28	0,39	0,54	0,31	0,73	0,50	0,39	0,35	0,36	0,48	0,30

2. Potential role of expectations:

Private consumption: $\log ($ YDRH/YDRH(-1))	-0,12	-0,27	-0,39	-0,05	-0,18	-0,19	-0,21	0,00	0,00	0,01	0,01	-0,02	0,00	-0,22
Private consumption: IRL	0,11	0,10	0,22	0,11	0,25	-0,72	0,50	0,00	0,03	0,01	0,01	-0,01	0,00	-0,15

3. Further coefficients

Output: LOG(WSSE / PGDPB / ELEFFU)	-0,21	0,71	0,10	2,37	-0,81	-4,84	-3,29	0,00	0,32	0,89	1,62	-1,97	-0,46	-0,65
Output : LOG(FDDV + XGSV - MGSV)	3,79	-2,85	1,89	-5,44	7,28	15,50	14,06	-0,05	-1,16	-2,90	-5,15	9,61	1,16	1,39
Wages: $\log (\mathbf{P C P})$	0,21	0,25	0,14	0,04	0,71	0,17	0,27	-1,10	-0,04	-0,12	0,32	1,05	0,55	0,21
Wages: \log (ELEFFU)	-0,32	-0,98	0,14	-0,05	-0,95	-0,94	-0,79	1,01	0,18	0,21	-1,48	-3,59	-2,59	-0,19
Labor Force: $\log (E T B / E T B(-1))$	0,04	0,10	0,11	0,02	0,07	0,02	0,09	0,00	0,00	0,00	0,00	0,00	0,00	-0,05
Labor force: UNR	0,11	0,10	0,22	0,11	0,23	-0,72	0,48	0,00	0,03	0,01	0,01	-0,01	0,00	-0,15
4. Linearity of the system	-0,47	-0,48	-0,52	-0,44	-0,48	-0,50	-0,47	-0,50	-0,51	-0,51	-0,49	-0,51	-0,51	-0,43

Note: GDPV: percentage difference to baseline gross domestic product level; DGDPV: percentage point difference to baseline GDPV growth rate; CPV: percentage difference to baseline private consumption; ITV: percentage difference to baseline investment; ET: percentage difference to baseline employment; UNR: percentage point difference to baseline unemployment rate; LFPR: percentage point difference to baseline labor force participation rate; DWSSE: percentage point difference to baseline growth in wages; DPDTY: percentage point difference to baseline productivity growth, PROD: percentage difference to baseline productivity level; CKL: percentage difference to baseline unit capital-labor cost; ULCB: percentage difference to baseline unit labor cost, business sector; DPGDP: percentage point difference to baseline inflation rate; NLGQ: percentage point difference to baseline net government lending as percentage of GDP

We run two scenarios where coefficients of the variables (YDRH/YDRH(-1)) and IRL are increased. The effects on the main variables are presented in the form of elasticities in Tab. 6.2. It is suggested by the results that no significant effects could be resulted from changing expectations as we formulated them.

The table also exhibits sensitivity indicators of additional coefficient changes. It is seen that the the sensitivity is highest for the two coefficients of the output equation and for the rest of the estimated parameters the effects are basically negligible. However, the larger values in the output equation are observed for ratios such as unemployment rate (UNR) and labor force participation rate (LFPR) and for these the actual, percentage point changes are small (for the demand variable coefficient the respective percentage point changes are -0.24 and 0.24).

Although the model is not linear it might behave like a linear one. In case the system behaves in a linear manner the impacts of CSF interventions on macroeconomic variables do not depend on their baseline forecasted values. Thus the last experiment is about the linearity of the system. We experimented with decreasing the CSF expenditures with the same structure to half of it and studied the likely effects of this change. As shown in the last row of the table for all the variables the decrease of the effect is very close to 50 percent that is taken as an indicator of the linearity of the model ${ }^{24}$.

[^20]
7. Economic impacts of CSF development policy interventions on the Hungarian economy: A scenario analysis

7.1 The baseline scenario for the Hungarian economy, 2007-2017

Although we try to generate the baseline forecast under a set of realistic assumptions about the prospective future development of exogenous variables and policy parameters, to be realistic with regards to the forecasted values for each endogenous variable it is not so much an important thing than to create a projection that simply makes economic sense. The baseline scenario serves as basis for the ex-ante analyses of CSF. However, since the model behaves like a linear one, the results of these analyses are nearly not affected by the levels of the endogenous variables and are therefore also independent of how good they were forecasted.

The main assumptions regarding the projections of the exogenous variables and some policy parameters can be summarized as follows:

The decline in total population, POPT, in the second half of the nineties seems to have come to a halt at the beginning of the century. We kept it, therefore, at its 2001 level.

Also government employment, EG, is kept constant, because a more likely reduction, which would occur, if Hungary followed the corresponding guidelines of the European Commission, is hard to predict.

Policy determined rates, such as direct and indirect taxes or social transfer rates are also kept at their 2001 values. In the same way some other policy variables of minor magnitude were treated, such as the property incomes paid and received by government, YPEPG and YPERG.

In comparison to other accession and transformation countries the government investment ratio, IGV/GDPV, was in Hungary rather low in the nineties, but increased from 2.5 percent in 1995 continuously up to 3 percent in 2001. We assumed that this trend will continue and in 2010 a ratio of 4 percent be reached.

Fig. 7.1: The baseline scenario for main economic variables, 2003-2017

The real interest rate remains constant, which means that a one-percentage point increase in the inflation rate increases the nominal interest rate also by one percent. Empirical research work corroborates this assumption for the long run (Deutsche Bundesbank 2001).

- As for world output, FGDPBV, which is in the model identical with the German gross domestic product of the business sector, an annual growth rate of 2 percent is assumed. Compared to the growth rates attained in the second half of the nineties in Germany, this is not a too pessimistic forecast.

Fig 7.1 exhibits the baseline scenario for main economic variables. For GDP (GDPV), labor productivity (PDTY) unit capital-labor cost (CKL) in the business sector and investment
(IPV) a continuous increase is assumed with an almost constant rate whereas for total employment the growth rate is decreasing. The optimistic feature of the baseline is completed by the decreasing trend of the unemployment rate (UNR). After 2004 a brake occurs in the decline of inflation rate (DGDPV). Unit labor cost (ULCB) seems to reach its highest level in the planning period.

7.2 Analyses of a scenario for the planning period 2007-2013

Table 7.1 lists the allocation of CSF support from EU sources according to the scenario provided by the National Development Office of the Hungarian government ${ }^{25}$.

Table 7.1: CSF expenditures spent over the period of 2007 and 2015 (EU support)

	Infrastructure	Education	R\&D	Total TFP-related	Investment	Demand side only	Total CSF
2007	144 930,96	84161,73	31487,96	260580,64	50874,26	72017,26	383 472,17
2008	283 926,99	128 165,62	35 535,31	447 627,92	90 581,69	142138,24	680 347,85
2009	302 313,38	135 196,93	35 535,31	473 045,61	97 436,95	145 487,48	715 970,05
2010	302 313,38	135 227,25	35 535,31	473 075,94	97 436,95	145 487,48	716000,37
2011	302 313,38	135227,25	35 535,31	473 075,94	97 436,95	145 487,48	716000,37
2012	302313,38	135 227,25	35 535,31	473 075,94	96 604,52	145487,19	715 167,65
2013	301 466,06	129 116,26	33 997,40	464579,72	90 011,38	145 404,05	699 995,14
2014	276 195,18	103748,84	22 032,62	401 976,64	72872,25	140542,95	615391,84
2015	138 046,47	65 825,61	19 523,18	223 395,27	39 757,96	70 505,11	333 658,34
	2353 819,17	1051 896,74	284717,71	3690 433,62	733 012,92	1152 557,25	5576 003,78

Note: All figures are in millions of 2004 Hungarian Forints

[^21]

Figure 7.1: The spatial distribution of CSF support over the period of 2007-2015

Figure 7.2: The planned distribution of CSF expenditures according to the classification used in the model (EU support)

Spatial and temporal features of the expenditures are presented in Figures 7.1 and 7.2. The scenario favors the Budapest agglomeration as more than 20 percent of expenditures are concentrated in Pest county (14 percent) and in Budapest. With our modeling approach the likely (static and dynamic) agglomeration effects can be accounted for as in GMR what matters is not only the size of expenditures but also their spatial distribution. These effects are assumed significant at this level of concentration of CSF funds. The remaining part of the expenditures are planned to be spent almost equally among the 18 counties with some
variation in it as two developing counties (Nógrád and Szabolcs-Szatmár-Bereg) receive the same share (6 percent) as the capital and two well-performing counties (Komárom-Esztergom and Györ-Moson-Sopron) are provided with about 2.5 percent of the total spending. As to the temporal characteristics of planned CSF expenditures after a steep increase from 2007 to 2008 the level of expenditures in all categories remains unchanged until 2014 when a sharp decline to 2015 starts.

The size of expenditures is considerable as it is compared to Hungarian GDP. Total CSF expenditures (including both EU resources and Hungarian cofinancing) account for about 4 percent which is a relatively high percentage compared to international experiences. Perhaps Germany in the period of 1994-2000 could come closest as the respective share was about 5 percent there (Schalk and Varga 2004).

The structure of expenditures especially taking into account the TFP-related ones is also worth detailing. Compared to 2003 spendings (the last year with no CSF intervention in Hungary) expenditures in infrastructure are 36 percent higher annually on average during the period of 2007-2015 whereas the corresponding figures for education and R\&D are 11 and 25 percents. On average with CSF support Hungary spends 22 percent more on TFP-related instruments than without the planned interventions.

We focus on the aggregate national level impacts in this section. Space constraints do not allow us to present national sectoral and county level aggregate and sectoral results. These can be studied in details by using the complex model software. Table 7.2 and figure 7.3 exhibit the results of the scenario on main macroeconomic variables. In the table the total CSF effects are communicated either in the form of percentage changes compared to the baseline (i.e., the situation without CSF interventions) or in the form of percentage point changes relative to the baseline. Variable acronyms are explained in the note of the table as well as the type of measure applied (i.e., percentage or percentage point differences). The figures provide further information with respect to the supply and demand effects on the main macro variables.

Table 7.2: Estimated effects of CSF interventions on main macroeconomic variables relative to baseline (EU support)

	GDPV	DGDPV	CPV	ITV	ET	UNR	LFPR	DWSSE	DPDTY	PROD	CKL	ULCB	DPGDP	NLGQ
2007	1,89	1,87	0,70	8,06	1,63	-0,95	0,38	0,00	0,25	0,03	-0,40	-0,09	-0,38	0,71
2008	3,33	1,40	1,41	13,07	2,81	-1,37	0,83	0,43	0,26	0,13	-0,88	0,10	-0,35	1,32
2009	4,69	1,31	2,41	15,00	3,73	-1,60	1,24	1,64	0,42	0,44	-1,67	1,19	-0,34	1,92
2010	6,07	1,31	3,59	16,34	4,47	-1,75	1,60	1,85	0,60	0,97	-2,60	2,17	-0,47	2,48
2011	7,15	1,01	4,70	17,00	4,81	-1,71	1,85	1,52	0,68	1,65	-3,50	2,58	-0,58	2,86
2012	8,32	1,08	5,81	18,31	5,13	-1,73	2,03	1,41	0,79	2,45	-4,42	2,70	-0,69	3,20
2013	9,29	0,90	6,86	18,73	5,17	-1,63	2,13	1,45	0,85	3,37	-5,37	2,69	-0,72	3,43
2014	9,01	-0,26	7,63	13,89	4,08	-0,92	1,93	1,43	0,79	4,40	-6,31	2,52	-0,59	3,21
2015	9,14	0,12	8,33	11,42	3,29	-0,62	1,65	1,23	0,87	5,49	-7,12	2,10	-0,67	2,99
2016	8,71	-0,39	8,58	8,45	2,10	-0,12	1,24	0,55	0,77	6,55	-7,66	1,08	-0,59	2,53
2017	8,58	-0,12	8,75	7,86	1,24	0,10	0,85	0,07	0,72	7,53	-8,11	-0,24	-0,61	2,10

Note: GDPV: percentage difference to baseline gross domestic product level; DGDPV: percentage point difference to baseline GDPV growth rate; CPV: percentage difference to baseline private consumption; ITV: percentage difference to baseline investment; ET: percentage difference to baseline employment; UNR: percentage point difference to baseline unemployment rate; LFPR: percentage point difference to baseline labor force participation rate; DWSSE: percentage point difference to baseline growth in wages; DPDTY: percentage point difference to baseline productivity growth, PROD: percentage difference to baseline productivity level; CKL: percentage difference to baseline unit capital-labor cost; ULCB: percentage difference to baseline unit labor cost, business sector; DPGDP: percentage point difference to baseline inflation rate; NLGQ: percentage point difference to baseline net government lending as percentage of GDP.

Figure 7.3: Demand and supply side impacts on main economic variables relative to the baseline (EU support, continued from previous page)

Demand side effects are formulated in the model as increased government investment (infrastructure investments), increased transfer payments (expenditures on human resources) and increased investments (investment support). The supply side is affected by TFP changes (resulting from infrastructure investments and supports for education, training and R\&D) on
the one hand and by less costly investments (i.e., support for productive structures decreases costs and potentially increase production).

The remaining part of this section is devoted to analyzing the results presented in Table 7.2 and Figure 7.3.

To measure the effects on output impacts on GDP level and GDP growth rate are presented in the Table and in the Figure. The difference to baseline GDP level constantly increases until 2015 then it seems to be stabilized at the value of nearly 9 percent. On average the increase in GDP level is about 7 percent. This is a two times higher effect than was calculated in the first planning period (2004-2006) for Hungary (Schalk and Varga 2004) which is understandable as the share of expenditures in GDP is about doubled in the second period. The 7 percent average impact figure comes also quite close to the German 1996-2000 experience when the 5 percent GDP share of CSF support resulted in a 6.5 percent average output effect.

It becomes clear from the Figure that most of the output effects come from the supply side. The demand side effect is strong in the beginning of the period than it stays at about 3 percents until the expenditures decrease in 2014 and 2015. In contrast to the demand side effect from the supply side a more prevalent and lasting impact is experienced. Productivity growth resulting from TFP increase and investment support exerts significant effects on output. The impact increases with a constant rate until 2014 (mainly due to the constant level of spendings on productivity-related policy instruments as shown in Figure 7.2) then it seems to reach a stable level of nearly 9 percent. Figure 7.3 also shows that while demand side effects decrease and almost vanish after the support is stopped supply side impacts prevail as the influence on productivity stays for longer time.

The effect on GDP growth rate reflects the same pattern as what we learned while studying the level impacts. The sharp increase of GDP growth rate change to 1.87 percentage point in 2007 is due to the demand schock. The demand effect on the growth rate then strongly decreases after 2008 and becomes even negative after 2010. This pattern perfectly repeats the one detailed when the demand side effect is explained. The same is true for the total effect on GDP growth rate. It remains around 1 percent during most of the planning period then it tends to fade away after 2015. Thus the almost zero growth effect from the supply side after the end
of CSF support is in accordance with the stable level effect. The average total effect on GDP growth rate is 0.75 percentage point.

The pattern of private consumption change is pretty similar to the GDP level effect. Most of it is a result of supply side interventions. With respect to investment the "no TFP supply side effect" does mean that both demand side and supply side (in the form of cheaper and increased investments) impacts are in force. There is a technical reason why we cannot separate them from each other in simulations. The supply-demand side impact shows a strong increase in 2007 and 2008 then it further increase until 2014 and with the end of CSF internventions it shows a sharp decline to the long lasting effect of about 8 percent.

The employment effect of CSF interventions according to the scenario analysed here is meqaningful (about 5 percent at the peak in 2014 and about 3.5 percent on average). This is due to the particular mixture of output, substitution and productivity effects working behind the scene. The output effect is partly due to the supply side (i.e., increasing productivity might increase output since unit cost is lower - this effect comes from both TFP increase and investment support) and partly resulted from the demand side (in the form of increased demand). Taken together of these effects they result in an increase in employment. Contrary to the output effects the substitution and the productivity impacts are counter-employment boosting. This is first because investment support decreases the cost of capital motivating firms to replace labor with productive structures and second because increased productivity via TFP support reduces costs of the same level of output that could motivate firms to produce less with less labor employed. As shown in the figure most of the impacts come from the demand side (output effect) and this vanishes after support is no longer available. The similar pattern can be observed for labor force participation rate as well.

As to unemployment the supply and demand side effects are quite close to each other but it is clear that the higher-than baseline unemployment rate is dominantly caused by supply side impacts. After taking into account that the decline in labor force participation is less dramatic than the decrease in employment it becomes clear that higher unemployment when interventions are no longer in effect is a result of these patterns. Increase in wages is significant in most part of the intervention period and after its end wage growth declines close to zero. Most of these effects are caused by productivity increase.

After a sharp increase in the beginning of the period the impact on labor productivity grows with a constant rate as a result of the supply side effects mainly. Demand and supply side influence labor productivity growth differently. While the demand side effect stays and then vanishes after the support is stopped the supply side impact increases for most of the period and seems to approach a longer term constant effect after 2014. These patterns repeat the one studied in more detail while the impacts on the GDP growth rate are examined.

The increase in unit labor cost compared to baseline is mainly due to increased productivity. It appears that higher than-baseline inflation rate after 2013 is the result of this demand side effect coming from increasing wages and consumption. The total effect on net government lending is positive during the whole period which means that CSF support decreases government deficit mainly due to the supply side effects.

Appendix 7 presents the results when the total amount of NDP support (i.e., EU and Hungarian co-financing together) is used for impact analysis. Due to the quasy-linear nature of GMR, the effects are slightly higher than the ones presented in this section.

7. Summary and conclusions

This report presented a detailed description of GMR-Hungary the complex macro- and regional model built for development policy impact analysis for the Hungarian National Development Agency. The main distinguishing features of the model can be summarized as follows:

- strong supply side orientation
- direct modeling of technological change
- incorporating geography (agglomeration) effects in the analysis
- the capacity of providing both macro and regional level analyses
- a four sector approach (industry, agriculture, services and government)
- the model is packaged in a user-friendly software environment.

GMR-Hungary has been developed by an international consortium that was necessary to establish given the extremely complex nature of the knowledge inherent in the system. The model is built on four strands of recent economic literatures: the new economic geography, the endogenous growth theory, the systems of innovation school and the geography of innovation field. According to the complex nature of the problem GMR is a coherently built system of three sub-models: the TFP sub-model (responsible for calculating static productivity effects) the SCGE sub-model (with the task of simulating long run dynamic effects on the spatial distribution of technology, labor, capital, wages and output) and the MACRO sub-model (which is incorporated into the system to generate likely macroeconomic effects of development policy interventions).

Additional to describing GMR-Hungary this report provided a detailed analysis of the likely effects of a scenario worked out by the Hungarian government for spending funds during the period of the National Development Plan II of the country.

Besides that GMR-Hungary extends the limits of development policy impact analyis significantly the model has several limitations directing towards further developments of its system. These include

- the crude account for agglomeration with a simple employment size measure;
- the limitations of TFP as the index of the development of technology (Hulten 2000);
- the limits of the knowledge production function approach in capturing knowledge spillover effects (Feldman 2000);
- the simplistic modeling of the migration of capital over space in the SCGE sub-model.

References

Acs Z and Varga A 2002 Geography, endogenous growth and innovation, International Regional Science Review, 25, pp. 132-148

Aghion P and Howitt P 1998 Endogenous growth theory. Cambridge, MA.: MIT Press
Anselin L, Varga A and Acs Z 1997 Local geographic spillovers between university research and high technology innovations. Journal of Urban Economics 42, 422-448

Audretsch D and Feldman M 1996 R\&D spillovers and the geography of innovation and production, American Economic Review, 86, pp. 630-640

Bajo-Rubio O and Sosvilla-Rivero S 1993 Does public capital affect private sector performance? An analysis of the Spanish case, 1964-1988. Economic Modelling 10, 179-185.

Barro R 1990 Government spending in a simple model of endogenous growth. Journal of Political Economy 98, 103-126

Barro R 1998 Notes on growth accounting. NBER Working Paper 6654, National Bureau of Economic Research, Cambridge, MA, pp 30

Barro R and Sala-i-Martin X 1995 Economic Growth. McGraw-Hill, New York
Bassanini A and Scarpetta S 2001 Does human capital matter for growth in OECD countries? OECD Economics De-partment, Working Papers No. 282. OECD, Paris, pp 30.

Braczyk H, Cooke P, Heidenreich M 1998 Regional Innovation Systems. The role of governances in a globalized world. UCL Press, London

Bradley J, Whelan K and Wright J 1995 HERMIN Ireland, Economic Modelling 12, 249-274
Bradley J, Morgenroth E and Untiedt G 2000 Analysis of the macroeconomic impact of the CSF on the economy or the former GDR. The Economic and Social Research Institute, Working Paper 2, Dublin

Bradley J, Morgenroth E and Untiedt G 2001 Analysis of the Macroeconomic Impact of the CSF on the Economy of East Germany. ifo Dresden studien 30, Dresden

Campos N and Coricelli F 2002 Growth in transition: What we know, what we don't and what we should. Journal of Economic Literature 40, 793-836

Caniels M 2000 Knowledge Spillovers and Economic Growth. Edward Elgar
Christodoulakis N M and Kalyvitis S C 1998 A four-sector macro-econometric model for Greece and the evaluation of the community support framework 1994-1999. Economic Modelling 15, 575-620.

Coburn C 1995 (ed) Partnerships. A compendium of state and federal cooperative technology programs. Battelle, Colombus

Cohen, W., Florida, R. and Goe, R. 1994. University-industry research centers in the United States. Carnegie Mellon University, Pittsburgh

Cserháti I and Varga A 2000 ECO-LINE: A macroeconometric model of the Hungarian economy. Hungarian Statistical Review 78, Special Number, 35-51

Darvas Zs és Simon A 1999 A növekedés makrogazdasági feltételei. Gazdaságpolitikai alternatívák. MNB Füzetek 1999-3, pp 73

Deutsche Bundesbank 2001 Realzinsen: Entwicklung und Determinan-ten. Deutsche Bundesbank, Monatsbericht Juli 2001, 33-50.

Engelbrecht H 1997 International R\&D spillovers, human capital and productivity in OECD economies: An empirical investigation. European Economic Review 41, 1479-1488

ESRI 2002 An examination of the ex-post macroeconomic impacts of CSF 1994-1999 on Objective 1 countries and regions. Dublin

Fan W, Treyz F and Treyz G 2000 An evolutionary new economic geography model. Journal of Regional Science 40, 671-695

Feldman M 1994 The university and economic development: the case of Johns Hopkins University and Baltimore. Economic Development Quarterly 8, 67-66

Feldman M 2000 Location and innovation: the new economic geography of innovation, spillovers, and agglomeration. In Clark G, Feldman M, Gertler M (Eds.) The Oxford Handbook of Economic Geography. Oxford University Press, Oxford, 373-394

Fernandez E and Mauro P 2000 The role of human capital in economic growth: The case of Spain. IMF Working Paper, WP/00/8, International Monetary Fund, New York, pp 27.

Fischer M 2001 Innovation, knowledge creation and systems of innovation, The Annals of Regional Science, 35, pp. 199-216

Franz W, Göggelmann F and Winker P1998 Ein ökonometrisches Ungleichgewichts-modell für die westdeutsche Wirtschaft 1960 bis 1994: Konzeption, Ergebnisse und Erfahrungen. In: Heilemann U, Wolters J (Hrsg.), Gesamtwirtschaftliche Modelle in der Bundesrepublik Deutschland: Erfahr-ungen und Perspektiven, Berlin, 115-165

Fuenta A and Donenech R 2000 Human capital in growth regressions: How much difference does data quality makes? OECD Economic Working Papers No. 262, OECD, Paris, pp 68.

Fujita M.and Thisse J 2002 Economics of Agglomeration. Cities, Industrial Location, and Regional Growth, Cambridge, MA: Cambridge University Press

Fujita M, Krugman P and Venables A 1999 The Spatial Economy. MIT Press

Fujita M and Thisse J 2002 Economics of Agglomeration. Cities, Industrial Location, and Regional Growth. Cambridge University Press

Fukuda S and Toya H 1994 The role of human capital accumulation for economic growth in East Asian countries. Seoul Journal of Economics 7, 215-233

Gemmell N 1996 Evaluating the impacts of human capital stocks and accumulation on economic growth: some new evidence. Oxford Bulletin of Economics and Statistics 58, 9-28

GVOP 2006 A Gazdasági Versenyképesség Operatív Program (GVOP) közbenső értékelése. 9. KÖTET. PROJEKTZÁRÓ DOKUMENTUM, V2.0 2006. április 11. KPMG, Pricewaterhouse Coopers, Fitzpatrick Associates

Hall R and Jones C 1999 Why do some countries produce so much more output per worker than others? Quarterly Journal of Economics February, 83-116

Hosoe N 1999 Opening up The Black Box: Scrutinization of the Internal Structure of Computable General Equilibrium Models, Unpublished Ph.D. dissertation, Osaka: Osaka University

Hulten C 2000 Total factor productivity: A short biography. NBER Working Paper 7471. NBER Cambridge

Isserman A 1994 State economic development policy and practice in the United States: a survey article. International Regional Science Review. 16, 49-100

Jaffe A, Trajtenberg M and Henderson R 1993 Geographic Localization of KnowledgeSpillovers as Evidenced by Patent Citations Quarterly Journal of Economics 108, 577-598

Jones C 1995 R\&D based models of economic growth, Journal of Political Economy, 103, pp. 759-784

Kaufman M. Luzio R and Dunaway S 2001 Returns to human capital investment in new technology. IMF Working Papers WP 133, International Monetary Fund, New York, pp 29

Keller W 2002 Geographic localization of international technology diffusion, American Economic Review 92, pp. 120-142

Koike A and Thissen M 2005 Dynamic SCGE model with agglomeration economy (RAEMLight), Unpublished manuscriptpp. pp 8

Koschatzky, K. 2000 The regionalization of innovation policy in Germany - Theoretical foundations and recent evidence, Working Papers Firms and Regions No. R1/2000, Fraunhofer Institute for Systems and Innovation Research (ISI), Department "Innovation Services and Regional Development"

Krugman P 1991 Increasing returns and economic geography, Journal of Political Economy, 99, pp. 483-499

Lee W and Lee T 1995 Human capital and economic growth. Tests based on the international evaluation of educational achievement. Economics Letters 47, 219-225

Leigthart J 2000 Public capital and output growth in Portugal: An empirical analysis. IMF Working Paper WP/00/11, International Monetary Fund, New York, pp 37

Lundval B 1992 (Ed.) National Systems of Innovation. Pinter, London
Mankiw N 2003 Macroeconomics. 5th edition, New York

Mulligan C and Sala-i-Martin X 1995 Measuring aggregate human capital. NBER Working Paper No. 5016. National Bureau of Economic Research, Cambridge, MA, pp 16

Nelson R 1.993 (Ed.) National Innovation Systems. Oxford University Press, New York
OECD 2000 Economic Surveys 1999-2000 Hungary. Paris
OECD 2000 Economic Surveys 1999-2000 Hungary, Paris
Oosterhaven J, Knaap T, Rijgrok C. and Tavasszy L 2001 On the Development of RAEM: The Dutch Spatial General Equilibrium Model and its First Application to A New Railway Link. Paper presented at the 41th Congress of the European Regional Science Association, Zagreb, August 29

Reamer A., Icerman L. and Youtie J 2003 Technology transfer and commercialization: their role in economic development. Economic Development Administration, US Department of Commerce

Révész T 2005 The effect of certain types of innovation on GDP growth. Unpublished manuscript (in Hungarian)

Romer P 1990 Endogenous technological change, Journal of Political Economy, 98, pp. S71S102

Schalk H J and Varga A 2004 The economic effects of EU Community Support Framework interventions. An ex-ante impact analysis with EcoRET, a macroeconomic model for Hungary. Center of Applied Economic Research Münster (CAWM), University of Münster, Münster

Schalk H J and Untiedt G 1996 Regional policy in Germany: Impacts on factor demand, technology and growth. Nota di Lavoro 68.96, Milano

Schalk H J and Untiedt G 2000 Regional investment incentives in Germany: Impacts on factor demand and growth. The Annals of Regional Science 34, 173-195

Solow R 1957 Technical change in an aggregative model of economic growth. International Economic Review 6, 18-31

Tallman E and Wang P 1992 Human capital investment and economic growth: New routes in theory address old questions. Economic Review, Federal Reserve Bank of Atlanta, September-October, pp 12

Thissen M 2003 RAEM 2.0 A regional applied general equilibrium model for the Netehrlands, Unpublished manuscript, pp 19

Treyz G 1993 Regional Economic Modelling: A systematic approach to economic forecasting and policy analysis. Kluwer, Boston

Turner D, Richardson P and Rauffet S 1996 Modelling the supply side of the seven major OECD economies. Economic Department Working Papers No. 167, OECD, Paris

Thomas R L 1997 Modern Econometrics. Harlow, England
Varga A 1998 University Research and Regional Innovation: A Spatial Econometric Analysis of Academic Technology Transfers. Kluwer Academic Publishers, Boston

Varga A 1999 Time-space patterns of US innovation: stability or change? A detailed analysis based on patent data, in M. FISCHER, L. SUAREZ-VILLA AND M. STEINER (Eds.) Innovation, Networks and Localities, 215-234. Berlin: Springer

Varga A 2000 Local academic knowledge spillovers and the concentration of economic activity. Journal of Regional Science 40, 289-309

Varga A (2006) The spatial dimension of innovation and growth: Empirical research, methodology and policy analysis. European Planning Studies 9, 1171-1186

Varga A (2007) Localised knowledge inputs and innovation: The role of spatially mediated knowledge spillovers in Hungary. Acta Oeconomica 57, 1-20

Appendices

Appendix 1: Equation system - Macro and TFP sub-models ${ }^{26}$

Variable
name

Variable description
Equation
Endogenous variable
$\left.\begin{array}{lll} & & \text { I. The supply side } \\ & \\ & \text { l. Business sector and government }\end{array}\right]$

[^22]| GDPB | Gross domestic product of business sector, value, factor costs | GDPB $=$ PGDPB $*$ GDPBV |
| :---: | :---: | :---: |
| GDP | Gross domestic product, value, market prices | $\mathrm{GDP}=\mathrm{GDPB}+\mathrm{CGW}+\mathrm{NIT}+\mathrm{CFKG}$ |
| NIT | Net indirect taxes, value | NIT=TIND-TSUB |
| TSUB | Subsidies | TSUB=TSUBQ*GDP |
| TIND | Indirect taxes, value | TIND=TINDQ*FDD |
| CFKG | Government consumption of fixed capital, value | CFKG $=0.043557$ *GDP |
| | | 2.Sectoral wages |
| WSSE1 | Compensation rate in agriculture | WSSE1 $=\operatorname{EXP}(1.125048364+0.8114342375 *$ LOG(WSSE) |
| WSSE2 | Compensation rate in industry | WSSE2 $=\operatorname{EXP}(0.5603170035+0.9138255462 *$ LOG(WSSE)) |
| WSSE3 | Compensation rate in services | WSSE3 $=\operatorname{EXP}(-0.4716353644+1.077508674 *$ LOG(WSSE)) |
| | | 3. Labor market |
| ET | Total employment | $\mathrm{ET}=\mathrm{ETB}+\mathrm{EG}$ |
| EEP | Dependent employment of the business sector | EEP=ET-ES-EG |
| ES | Self-employed | ES=ESQ*ETB |
| EE | Dependent employment | EE=EEP+EG |
| LF | Labor force | $\begin{aligned} \mathrm{LF}= & \mathrm{POPT} *(0.1254955234+0.8184106563 *(\mathrm{LF}(-1) \\ & / \text { POPT }(-1))+0.1884826701 * \operatorname{LOG}(\mathrm{ETB} / \mathrm{ETB}(-1)) \\ & -0.00263766064 * \operatorname{UNR}(-1)) \end{aligned}$ |
| UN | Unemployment | UN=LF-ET |
| UNR | Unemployment rate | UNR=UN*100./LF |
| LFPR | Labor force participation rate | LFPR=LF/POPT*100.0 |
| PDTY | Labor productivity of the total economy | PDTY $=$ XPDTY $*$ (GDPV/ET) |
| | | II. The demand side |
| | | 1. Volumes |
| FDDV | Final domestic expenditure, volume | $\mathrm{FDDV}=\mathrm{CPV}+\mathrm{CGV}+\mathrm{ITV}$ |
| CPV | Private final consumption expenditure, volume | $\begin{aligned} & \text { CPV = YDRH } * \operatorname{EXP}(0.067187+0.745648 * \\ & \text { LOG(CPV(-1) / YDRH(-1)) }-0.588445 * \\ & \text { LOG(YDRH / YDRH(-1)) }-0.005051 * \text { IRL }+ \\ & 0.02838 * \text { DUMMY94) } \end{aligned}$ |
| CGV | Government final consumption expenditure, volume | CGV=CG/PCG |

ITV	Gross total fixed capital formation, volume	$\mathrm{ITV}=\mathrm{IPV}+\mathrm{IGV}$
IGV	Government fixed capital formation, volume	IGV=IG/PIT
TDDV	Total domestic expenditure, volume	TDDV=FDDV + ISKV
ISKV	Increase in stocks, volume	$\mathrm{ISKV}=\mathrm{ISK} /((\mathrm{TDD}-\mathrm{FDD}) /(\mathrm{TDDV}-\mathrm{FDDV}))$
FBGSV	Net exports of goods and services, volume	FBGSV=GDPV-TDDV
XGSV	Exports, volume	$\begin{aligned} & \text { XGSV }=\mathrm{xgsvqr} * \mathrm{GDPV} \\ & \text { Where } \mathrm{xgsvqr}=0.856 \end{aligned}$
MGSV	Imports, volume	MGSV $=$ mgsvqr_ 1 * GDPV
		Where mgsvqr_1 =mgsv/gdpv for the 1995-2003 period
		2. Values
FDD	Final domestic expenditure, value	$\mathrm{FDD}=\mathrm{CP}+\mathrm{CG}+\mathrm{IT}$
CP	Private final consumption expenditure, value	$\mathrm{CP}=\mathrm{CPV} * \mathrm{PCP}$
CG	Government final consumption expenditure, value	CG=CGW+CGNW
IT	Gross total fixed capital formation, value	$\mathrm{IT}=\mathrm{IP}+\mathrm{IG}$
IP	Private total fixed capital formation, value	$\mathrm{IP}=\mathrm{IPV} * \mathrm{PIT}$
TDD	Total domestic expenditure, value	TDD $=$ FDD + ISK
FBGS	Net exports of goods and services, value	FBGS=GDP-TDD
		3. Deflators
LLRPCP	Domestic expenditure excl. government wages, deflator, \log	$\begin{aligned} & \text { LLRPCP }=(1 /(\mathrm{GDPB}+\mathrm{NITV})) *(\mathrm{GDPBV} \\ & \text { } \\ & * \mathrm{LOG}(\mathrm{PGDPB} / \mathrm{LOGDPB}((\mathrm{NIT} / \mathrm{NITV}) /(\mathrm{NIT}(-1))+\mathrm{NITV} \\ & \text { (NITV(-1)))) } \end{aligned}$
PGDPB	Gross domestic product, business sector, deflator	$\begin{gathered} \text { PGDPB }=\text { EXP }(-2.184324816+0.3752619755 * \\ \text { LOG(CKL) }+ \\ (1-0.3752619755) * \text { LOG(PGDPB(-1)) }+0.05440570567 * \\ \text { DUMMY_96_97 }-0.05222860349 * \\ \text { DUMMY_99) } \end{gathered}$
DPGDPB	Inflation rate of GDPB	DPGDPB $=$ LOG $(\text { PGDPB } / \mathrm{PGDPB}(-1))^{*} 100$
PCGW	Government final wage consumption expenditure, deflator	PCGW=PCGW $(-1) * W R G / W R G(-1)$
PCP	Private final consumption expenditure, deflator	$\begin{aligned} \text { PCP }= & \operatorname{EXP}(0.06613158286+0.4083546987 * \\ & \text { LOG(PGDPB) }+0.2302822653 * \text { LOG(PMGS }) \\ & +(1-0.4083546987-0.2302822653) * \\ & \text { LOG(PCP(-1)) + 0.01583059211*} \\ & \text { DUMMY_95_96) } \end{aligned}$
DPCP	Inflation rate of PCP	$\mathrm{DPCP}=\mathrm{LOG}(\mathrm{PCP} / \mathrm{PCP}(-1))^{*} 100$

PIT	Gross total fixed capital formation, deflator	$\begin{aligned} \text { PIT }= & \text { EXP }(-0.006428406909+0.6508908 \\ & \text { LOG(PGDPB) }+0.3718922778 \\ & +(1-0.6508908841-0.3718922 \\ & \text { LOG(PIT(-1)) }-0.02929867509 \\ & \text { }(\text { DUMMY_00_01 + DUMMY_9 } \end{aligned}$
PCG	Government final consumption expenditure, deflator	PCG=PCGQ*PGDPB
PCGNW	Government final non-wage consumption expenditure, deflator	$\begin{aligned} \text { PCGNW } & =\text { PCGNW }(-1) * \operatorname{EXP}(-0.034202 \\ & +\operatorname{LOG}(\operatorname{PCG} / \operatorname{PCG}(-1))) \end{aligned}$
PFDD	Final domestic expenditure, deflator	$\mathrm{PFDD}=(\mathrm{CP}+\mathrm{CG}+\mathrm{IT}) /(\mathrm{CPV}+\mathrm{CGV}+\mathrm{ITV})$
PTDD	Total domestic expenditure, deflator	PTDD $=$ TDD/TDDV
PGDP	Gross domestic product, market prices, deflator	PGDP=GDP/GDPV
DPGDP	Inflation rate of GDP	DPGDP=LOG(PGDP/PGDP(-1))*100
PTE	Total expenditure exclusive government wage consumption, deflator	PTE=(TDD-CGW)/(TDDV-CGW/PCGW)
		III. Income distribution
YDH	Household disposable income, value	YDH=YRH-TYH-TRPH
YRH	Current receipts of households, value	YRH=WSSS + YOTH+TRRH
WSSS	Compensation of employees, value	WSSS=WSSE*EEP+CGW
YOTH	Self-employment \& property income received by households, value	YOTH=YSE + YPE
YSE	Self-employment income received by households, value	YSE=YSEQ*ES*WSSE
YPE	Property income received by households, value	YPE=YPEQ*PROF
PROF	Profits and other non-wage income, value	PROF=GDP-WSSS-YSE-NIT
TRRH	Current transfers received by households, value	TRRH=SSPG+TRPG+ZCS001
SSPG	Social security benefits paid by government	SSPG $=0.476907 * W S S E * U N+S S P G(-1)$
TYH	Direct taxes on households, value	TYH=TYHQ*YRH
TRPH	Total transfers paid by households, value	TRPH $=$ TROPH + TRSSH
TROPH	Non-social security transfers paid by households, value	TROPH=TROPHQ*YRH
TRSSH	Social security contributions by households, value	TRSSH=TRPBTH+TRPESH+TRPGSH

TRPBTH	Private employers social security contributions	TRPBTH=TRPBTHQ*(WAGE-WAGEG)
TRPGSH	Government employers contributions to social security, value	TRPGSH=TRPGSHQ*WAGEG
	Employees \& self-employed contributions to social security, value	
TRPESHESH=TRPESHQ*(WAGE-WAGEG+YSE)		

Appendix 2: Variables - Macro and TFP sub-models ${ }^{27}$

A II. 1 : Exogenous variables

Variable
name \quad Variable description

CGNW Government final non-wage consumption expenditure, value
EG Government employment
ESQ Self-employment share in business economy
EUGDPV Gross domestic product in the EU15, volume
FGDPBV Foreign gross domestic product, business sector, volume, factor cost
FISIMV FISIM, volume
IG Government fixed capital formation, value
IRL Long term interest rate on government bonds
ISK Increase in stocks, value
KTRRG Net government capital transfers received
PCGQ Ratio of government final consumption expenditure deflator to GDP deflator
POPT Working-age population
SHET1 Share of agriculture in total business employment
TIME Time trend (0 in 1995)
TINDQ Total tax ratio of indirect taxes
TPCOST Transport costs
TROPHQ Share of non-social security transfers, paid by households, in their income
TRPBTHQ Share of private employers' contribution to social security and pension fonds in private sector wages
TRPESHQ Share of employees \& self-empl. social security contributions in market income
TRPG Other current transfers paid by government
TRPGSHQ Share of government employers social security contributions in public sector wages
TRRG Other current transfers received by government, value
TSUBQ Share of subsidies in GDP
TYBQ Total tax ratio of direct taxes on profits
TYHQ Total tax ratio of direct taxes on households
WRGQ Compensation rate of government employees relative to total economy
XNITV Coefficient
XPDTY Coefficient
XTAU Coefficient
YPEQ Share of property income in profits
YPEPG Property income paid by government, value
YPERG Property income received by government, value
YSEQ Share of income from self-employment in total income
ZCS001 Non-social security transfers received by households

[^23]
A II. 2 : Endogenous variables

Variable	\quad Variable description
name	
CAPOG	Net capital outlays of the government, value
CFKG	Government consumption of fixed capital, value
CG	Government final consumption expenditure, value
CGV	Government final consumption expenditure, volume
CGW	Government final wage consumption expenditure, value
CKL	Unit capital-labor costs
CP	Private final consumption expenditure, value
CPV	Private final consumption expenditure, volume
DPCP	Inflation rate of PCP
DPGDP	Inflation rate of GDP
DPGDPB	Inflation rate of GDPB
EE	Dependent employment
EEP	Dependent employment of the business sector
ELEFFU	Labor efficiency of the business sector
ES	Self-employed
ET	Total employment
ETB	Employment of the business sector
ET1	Employment in agriculture
ET2	Employment in industry
ET3	Employment in services
FBGS	Net exports of goods \& services, value
FBGSV	Net exports of goods \& services, volume
FDD	Final domestic expenditure, value
FDDV	Final domestic expenditure, volume
GDP	Gross domestic product, value, market prices
GDPB	Gross domestic product of the business sector, value, factor costs
GDPBV	Gross domestic product, business sector, volume, factor cost
GDPV	Gross domestic product, volume, market prices
GVAV	Gross value added, volume
GVABV	Gross value added of the business sector, volume
GVAV1	Gross value added in agriculture, volume
GVAV2	Gross value added in industry, volume
GVAV3	Gross value added in services, volume
IGV	Government fixed capital formation, volume
IP	Private total fixed capital formation, value
IPV	Private total fixed capital formation, volume
IPV1	Private total fixed capital formation in agriculture, volume
IPV2	Private total fixed capital formation in industry, volume
IPV3	Private total fixed capital formation in services, volume
ISKV	Increase in stocks, volume
IT	Gross total fixed capital formation, value
ITV	Gross total fixed capital formation, volume
LF	Labor force
LFPR	Labor force participation rate
LLRPCP	Domestic expenditure excl. government wages, deflator, log
NIT	Net indirect taxes, value
NITV	Net indirect taxes, volume
NLG	Government net lending, value
NLGQ	Government net lending, as a percentage of GDP

NPROD3	Labor productivity in services relative to the total economy
PCG	Government final consumption expenditure, deflator
PCGNW	Government final non-wage consumption expenditure, deflator
PCGW	Government final wage consumption expenditure, deflator
PCP	Private final consumption expenditure, deflator
PDTY	Labor productivity of the total economy
PFDD	Final domestic expenditure, deflator
PGDP	Gross domestic product, market prices, deflator
PGDPB	Gross domestic product, business sector, deflator
PIT	Gross total fixed capital formation, deflator
PROD	Labor productivity of the business economy
PROD1	Labor productivity in agriculture
PROD2	Labor productivity in industry
PROD3	Labor productivity in services
PROF	Profits and other non-wage income, value
PTDD	Total domestic expenditure, deflator
PTE	Total expenditure excl. government wage consumption, deflator
RPROD2	Labor productivity ratio between industry and services
RWAGQ2	Wage quota in industry relative to services
RWSSE2	Compensation rate in industry relative to agriculture and services
SAVG	Government saving, value
SAVH	Household saving, value
SHEE1	Share of agriculture in all business sector employees
SHEE2	Share of industry in all business sector employees
SHEE3	Share of services in all business sector employees
SHETX2	Share of industry in total non-agricultural business employment
SHET2	Share of industry in total business employment
SHET3	Share of services in total business employment
SHGVAV1	Share of agriculture in business gross value added, volume
SHGVAV2	Share of industry in business gross value added, volume
SHGVAV3	Share of services in business gross value added, volume
SHIPV2	Share of industry in private total fixed capital formation, volume
SHIPV3	Share of services in private total fixed capital formation, volume
SHIPV1	Share of agriculture in private total fixed capital formation, volume
SRATIO	Household saving ratio
SSPG	Social security benefits paid by government
TDD	Total domestic expenditure, value
TDDV	Total domestic expenditure, volume
TROPH	Non-social security transfers paid by households, value
TRPESH	Employees \& self-employed contributions to social security, value
TRPGSH	Government employers contributions to social security, value
TRPH	Total transfers paid by households, value
TRRH	Current transfers received by households, value
TRSSH	Social security contributions by households, value
TY	Total direct taxes, value
TYB	Direct taxes on business, value
TYH	Direct taxes on households, value
UCC	User costs of capital
ULCB	Unit labor costs in the business sector
UN	Unemployment
UNR	Unemployment rate
WAGE	Wages, value
WAGEG	Wages of the government sector, value
WRG	Compensation rate of government employees

WSSE	Compensation rate of the business sector
WSSE1	Compensation rate in agriculture
WSSE2	Compensation rate in industry
WSSE3	Compensation rate in services
WSSS	Compensation of employees, value
XGSV	Exports, volume
YDH	Household disposable income, value
YDRH	Household disposable income, real
YOTH	Self-employment \& property income received by households, value
YPE	Property income received by households, value
YPG	Government current disbursements, value
YPGT	Government total disbursements, value
YPGTQ	Government total disbursements, as a percentage of GDP
YPH	Current disbursements of households, value
YRG	Government current receipts, value
YRGQ	Government current receipts, as a percentage of GDP
YRH	Current receipts of households, value
YSE	Self-employment income received by households, value

A II.3: TFP sub-model variables

Variable name	Variable description	Variable status	Geographic aggregation
CEMP	Weights, calculated by county employment shares	Exogenous	County
CSFTFP	Total factor productivity, CSF policy effects included	Endogenous Endogenous	National County
CTFPGR	County TFP growth	Endogenous	National
DNTFPGR	Change of national TFP growth due to CSF policy	Exogenous	County
DUM99	Dummy variable: year 1999 BPDUM	Dummy variable: Budapest Human resources expenditures (education, training and R\&D)	Exogenous

Appendix 3: The equation system of the SCGE sub-model ${ }^{28}$

The output by the Cobb-Douglas production function ${ }^{29}$:

$$
\begin{equation*}
y_{i, m, t}=A_{i, m, t}\left(L_{i, t}\right) L_{i, m, 0}^{a_{i, m}} K_{i, m, 0}^{1-a_{i, m}} \tag{1}
\end{equation*}
$$

where in case of starting point $t=0$ come true:

$$
\begin{equation*}
L_{i, 0}=\sum_{m=1}^{M} L_{i, m, 0} \tag{1-a}
\end{equation*}
$$

Since $a_{i, m}=a_{j, m}$ in case of $\forall i, j$ and m, it follows that we can leave out the i index of $a_{i, m}$ from the (1) equation:

$$
\begin{equation*}
y_{i, m, t}=A_{i, m, t}\left(L_{i, t}\right) L_{i, m, 0}^{a_{m}} K_{i, m, 0}^{1-a_{m}} \tag{1-b}
\end{equation*}
$$

$$
\begin{equation*}
A_{i, m, t}\left(L_{i, t}\right)=\zeta_{i, m, t} A_{i, m}^{\prime} L_{i, t}^{\gamma_{m}} \tag{2}
\end{equation*}
$$

where $\zeta_{i, m, t}$ is a flavour factor for the given TFP is defined as follows ${ }^{30}$:

$$
\begin{equation*}
\zeta_{i, m, t}=\text { TFPSHARE }_{i, m}\left(1+\text { TFPGROWTH }^{t}\left(1+\text { TFPSHOCK }_{i, m, t}\right)\right. \tag{2-a}
\end{equation*}
$$

furthermore $A_{i, m}^{\prime}=A_{j, n}^{\prime}$ and $\gamma_{m}=\gamma_{n}$ in case of $\forall i, j, m, n$ so we can leave these indexes:

$$
\begin{equation*}
A_{i, m, t}\left(L_{i, t}\right)=\zeta_{i, m, t} A^{\prime} L_{i, t}^{\gamma} \tag{2-b}
\end{equation*}
$$

The F.O.B. prices ${ }^{31}$ of region i in sector m

$$
\begin{equation*}
q_{i, m, t}=\frac{w_{i, t}^{a_{m}} r^{1-a_{m}}}{A_{i, m, t} a_{m}^{a_{m}}\left(1-a_{m}\right)^{1-a_{m}}} \tag{3}
\end{equation*}
$$

The input factor demand functions ${ }^{32}$:

$$
\begin{equation*}
L_{i, m, t}^{\prime}=\frac{a_{m}}{w_{i, t}} q_{i, m, t} y_{i, m, t}^{\prime} \tag{4}
\end{equation*}
$$

[^24]\[

$$
\begin{equation*}
K_{i, m, t}^{\prime}=\frac{1-a_{m}}{r} q_{i, m, t} y_{i, m, t}^{\prime} \tag{5}
\end{equation*}
$$

\]

The utility functions of the households ${ }^{33}$:

$$
\begin{equation*}
u_{i, t}=\alpha \ln \left[h_{i}\right]+\sum_{m=1}^{M} \beta_{m} \ln \left[\left(1-\sigma_{1}\right) x_{i, m, t}\right] \tag{6}
\end{equation*}
$$

The budget constraints of the households:

$$
\begin{equation*}
l_{i} w_{i, t}+\frac{r \mathbf{K}_{t}}{\mathbf{N}_{t}}=\sum_{m=1}^{M} p_{i, m, t} x_{i, m, t} \tag{7}
\end{equation*}
$$

We can derive the following demand functions ${ }^{34}$:

$$
\begin{equation*}
x_{i, m, t}=\frac{\beta_{m}}{1-\alpha} \frac{1}{p_{i, m, t}}\left(l_{i} w_{i, t}+\frac{r \mathbf{K}_{t}}{\mathbf{N}_{t}}\right) \tag{8}
\end{equation*}
$$

The probability of buying good m in region i when living in region j is defined as follows ${ }^{35}$ in case of $m=1$ and $m=2$:

$$
\begin{equation*}
s_{i j, m, t}=\frac{y_{i, m, t} e^{-\lambda_{m} q_{i, m, t}\left(1+\tau_{i j, m}\right)}}{\sum_{k=1}^{I} y_{k, m, t} e^{-\lambda_{m} q_{k, m, t}\left(1+\tau_{k j, m}\right)}} \tag{9}
\end{equation*}
$$

in case of $m=3$ and $m=4$:

$$
\begin{equation*}
s_{i j, m, t}=1 \text { if } i=j, \text { or rather } s_{i j, m, t}=0 \text { if } i \neq j \tag{10}
\end{equation*}
$$

The interregional trade volume:

$$
\begin{equation*}
z_{i j, m, t}=N_{j, t} x_{j, m, t} s_{i j, m, t} \tag{11}
\end{equation*}
$$

The cost of transportation is also included in the C.I.F. price:

$$
\begin{equation*}
p_{j, m, t}=\sum_{i=1}^{I} s_{i j, m, t} q_{i, m, t}\left(1+\tau_{i j, m}\right) \tag{12}
\end{equation*}
$$

The market equilibrium conditions:

- labor market:

$$
\begin{equation*}
\sum_{m=1}^{M} L_{i, m, t}^{\prime}=L_{i, t} \text { in every region, } \forall i=1 . . I \tag{13}
\end{equation*}
$$

[^25]- capital market:

$$
\begin{equation*}
r\left(\sum_{i=1}^{I} \sum_{m=1}^{M} K_{i, m, t}^{\prime}-\mathbf{K}_{t}\right)=0 \tag{14}
\end{equation*}
$$

- goods market (demand) ${ }^{36}$:

$$
\begin{equation*}
N_{j, t} x_{j, m, t}=\sum_{i=1}^{I} z_{i j, m, t} \tag{15}
\end{equation*}
$$

- goods market (supply):

$$
\begin{equation*}
y_{j, m, t}^{\prime}=\sum_{i=1}^{I}\left(1+\tau_{i j, m}\right) z_{i j, m, t} \tag{16}
\end{equation*}
$$

The labor migration model ${ }^{37}$:
where $i=1 . . I$ the index of regions, $t=0 . . T$ the index of year, consequently $L_{i, t}$ means the labor of region i int he year t. To take into consideration $\sum_{i \in I} L_{i, t}=\mathbf{L}_{t}$, and to perform the parentheses:

$$
\begin{equation*}
L_{i, t+1}=\left\{L_{i, t}+\left(\frac{e^{\theta\left(u_{i, t}+c_{i}\right)}}{\sum_{i \in I} e^{\theta\left(u_{i, t}+c_{i}\right)}}-\frac{1}{I}\right) \phi \mathbf{L}_{t}\right\} G \tag{17-a}
\end{equation*}
$$

The (17-a) equations well exemplifies, that if value of $e^{\theta\left(u_{i, t}+c_{i}\right)}$ in the given region is exactly the average of the $e^{\theta\left(u_{i, t}+c_{i}\right)}$ value of the all regions:

$$
\begin{equation*}
e^{\theta\left(u_{i, t}+c_{i}\right)}=\frac{\sum_{i \in I} e^{\theta\left(u_{i, t}+c_{i}\right)}}{I} \tag{17-b}
\end{equation*}
$$

So if the utility function gives the value of $u_{i, t}$ according to (17-b) equation, then there is no migration in the given region. In case of $t=0$ this condition is true in each regions. To replace (17-b) into (17-a):

$$
\begin{equation*}
L_{i, t+1}=L_{i, t} G \tag{17-c}
\end{equation*}
$$

Simply equation is true in each region according to (17-b).

[^26]To use notation σ_{m} as the share of investment in sector m, and $l_{i, m, t}$: investment goods:

$$
\begin{equation*}
l_{i, m, t}=\sigma_{m} N_{i, t} x_{i, m, t} \tag{18}
\end{equation*}
$$

So the (1- σ_{m}) part of outputs are consumed in the households, accordingly the equation (6) is explainable.

$$
\begin{equation*}
u_{i, t}=\alpha \ln \left[h_{i}\right]+\sum_{m=1}^{M} \beta_{m} \ln \left[\left(1-\sigma_{m}\right) x_{i, m, t}\right] \tag{19}
\end{equation*}
$$

The investment increases total capital as follows:

$$
\begin{equation*}
\mathbf{K}_{t+1}=(1-\delta) \mathbf{K}_{t}+\sum_{i=1}^{I} \sum_{m=1}^{M} t_{i, m, t} \tag{20}
\end{equation*}
$$

Where δ is the average depreciation rate.

Appendix 4: Variable sources - Macro sub-model ${ }^{38}$

1. Raw Variables

Variable Description	Name	Source variables	Database
Government consumption of fixed capital, value	CFKG	S13_B.2g (RES); HUN.1.0.0.0.UKCG	S-Statistic; AMECO
Government final consumption expenditure, value	CG	HUN.1.0.0.0.UCTG	AMECO
Government final expenditure, value	consumption	CGW	HUN.1.0.0.0.UWCG
Private final consumption expenditure, value	CP	HECO	
Private final consumption expenditure, volume	CPV	HUN.1.1.0.0.0CPH	AMECO
Employees in agriculture	EE1	HUN.1.0.0.0.NWT1	AMECO
Employees in industry	EE2	HUN.1.0.0.0.NWT2 +HUN.1.0.0.0.NWT4	AMECO
Employees in services	EE3	HUN.1.0.0.0.NWT5	AMECO
Government employment	EG	Imputed	/
Self-employed	ES	HUN.1.0.0.0.NSTD	AMECO
Total employment	ET	HUN.1.0.0.0.NETN	AMECO
Employment in agriculture	ET2	HUN.1.0.0.0.NET1 +HUN.1.0.0.0.NET2	AMECO
Employment in industry	AMECO		
Employment in services	ETT	IT	HEG

[^27]| Working-age population | POPT | HUN.1.0.0.0.NPAN | AMECO |
| :---: | :---: | :---: | :---: |
| Social security benefits paid by government | SSPG | S.14_D. 62 (RES) | S-Statistic |
| Time (year-1995) | TIME | -2; -1; 0; 1; 2; ... 18 | / |
| Indirect taxes, value | TIND | HUN.1.0.0.0.UTVT | AMECO |
| Total direct taxes, value | TY | S1_D.5(RES) | S-Statistic |
| Direct taxes on households, value | TYH | S14_D. 5 (USES) | S-Statistic |
| Transport costs | TPCOST | Transman Kft. | |
| Non-social security transfers paid by households, value | TROPH | $\begin{aligned} & \text { S14_D.7(USES) } \\ & \text { + S15_D.7(USES) } \\ & \hline \end{aligned}$ | S-Statistic |
| Private employers social security contributions | TRPBTH | $\begin{aligned} & \hline \text { S1_D.12(RES) } \\ & \text {-S13_D12(USES) } \end{aligned}$ | S-Statistic |
| Employees \& self-employed contributions to social security, value | TRPESH | $\begin{array}{\|l} \text { S14_D.61(USES) } \\ \text {-S1_D.12(RES) } \\ \hline \end{array}$ | S-Statistic |
| Other current transfers paid by government | TRPG | S13_D. 7 (USES) | S-Statistic |
| Government employers contributions to social security, value | TRPGSH | S13_D12(USES) | S-Statistic |
| Other current transfers received by government, value | TRRG | S13_D7(RES) | S-Statistic |
| Compensation of employees, value | WSSS | HUN.1.0.0.0.UWCD | AMECO |
| Compensation of employees in agriculture | WSS1 | HUN.1.1.0.0.UWC1 | AMECO |
| Compensation of employees in industry | WSS2 | HUN.1.1.0.0.UWC2
 +HUN.1.1.0.0.UWC4 | AMECO |
| Compensation of employees in services | WSS3 | HUN.1.1.0.0.UWC5 | AMECO |
| Exports, volume | XGSV | HUN.1.1.0.0.OXGS | AMECO |
| Exchange rate to the Euro | XR | HUN.1.0.99.0.XNE | AMECO |
| Coefficient | XTAU | 0.67 | |
| Property income received by households, value | YPE | S 14_D.4(RES) -S14_D.4(USES) +S15_D.4(RES) -S15_D.4(USES) | S-Statistic |
| Property income paid by government, value | YPEPG | HUN.1.0.0.0.UYIG | AMECO |
| Property income received by government, value | YPERG | S13_D.4(RES) | S-Statistic |
| Self-employment income received by
 households, value | YSE | $\begin{aligned} & \text { S14_B.2g(RES) } \\ & \text { + S15_B.2g(RES) } \\ & + \text { S15_B.3g(RES) } \end{aligned}$ | S-Statistic |
| $\begin{array}{l}\text { Non-social security } \\ \text { households }\end{array}$ transfers received by | ZCS001 | $\begin{aligned} & \text { S14_D. } 7 \text { (RES) } \\ & + \text { S15_D. } 7 \text { (RES) } \end{aligned}$ | S-Statistic |

2. Generated Variables

Variable Description	Name	Source variables
Government final non-wage consumption expenditure, value	CGNW	CG-CGW
Self-employment share in business economy	ESQ	ES/ETB
Employment of the business sector	ETB	ET-EG
Gross domestic product in the EU15, volume	EUGDPV	EUGDP*XR/PGDP
Gross domestic product of the business sector, value, factor costs	GDPB	GDP-GDPG
Gross domestic product, business sector, volume, factor cost	GDPBV	GDPV-GDPGV

Gross domestic product of the government sector, value	GDPG	CGW+TIND-TSUB+CFKG
Gross domestic product of the government sector, volume	GDPGV	$\begin{array}{\|l} \hline \text { EG*CGW(1995)/EG(1995) } \\ \text { +CFKG*IT/ITV } \\ \text { +GDPV/ET(1995)/GDPV(1995) } \\ \text {-EG*CGW(1995)/ET(1995) } \\ \hline / \mathrm{EG}(1995) / \mathrm{GDPV}(1995) \\ \hline \end{array}$
Private total fixed capital formation, volume	IPV	ITV-IG/PIT
Private total fixed capital formation in industry, volume	IPV2	IP2/PIT
Private total fixed capital formation in services, volume	IPV3	IP3/PIT
Government final non-wage consumption expenditure, deflator	PCGNW	CGNW/(CG/PCG-CGW/PCGW)
Government final wage consumption expenditure, deflator	PCGW	WRG/WRG(1995)
Ratio of government final consumption expenditure deflator to GDP deflator	PCGQ	PCG/PGDPB
Private final consumption expenditure, deflator	PCP	CP/CPV
Gross domestic product, business sector, deflator	PGDPB	GDPB/GDPBV
Gross total fixed capital formation, deflator	PIT	IT/ITV
Labor productivity in agriculture	PROD1	GVAV1/ET1
Profits and other non-wage income, value	PROF	GDP-WSSS-YSE-NIT
Labor productivity ratio between industry and services	RPROD2	GVAV2/ET2*ET3/GVAV3
Share of industry in all business sector employees	SHEE2	EE2/(ET-ES-EG)
Share of services in all business sector employees	SHEE3	EE3/(ET-ES-EG)
Share of agriculture in total business employment	SHET1	ET1/ETB
Share of industry in total non-agricultural business employment	SHETX2	ET2/(ET2+ET3)
Share of industry in private total fixed capital formation, volume	SHIPV2	IPV2/IPV
Share of services in private total fixed capital formation, volume	SHIPV3	IPV3/IPV
Total tax ratio of indirect taxes	TINDQ	TIND/FDD
Share of non-social security transfers, paid by households, in their income	TROPHQ	TROPH/YRH
Share of private employers' contribution to social security and pension fonds in private sector wages	TRPBTHQ	TRPBTH/(WAGE-WAGEG)
Share of employees \& self-empl. social security contributions in market income	TRPESHQ	TRPESH/(WAGE-WAGEG+YSE)
Share of government employers social security contributions in public sector wages	TRPGSHQ	TRPGSH/WAGEG
Subsidies	TSUB	TIND-NIT
Share of subsidies in GDP	TSUBQ	TSUB/GDP
Direct taxes on business, value	TYB	TY-TYH
Total tax ratio of direct taxes on profits	TYBQ	TYB/PROF
Total tax ratio of direct taxes on households	TYHQ	TYH/YRH
Compensation rate of government employees	WRG	CGW/EG
Compensation rate of government employees relative to total economy	WRGQ	CGW/EG/WSSE

| | Compensation rate of the business sector | WSSE |
| :--- | :--- | :--- | (WSSS-CGW)/(ETB-EG-ES)

Appendix 4: Transportation cost calculation ${ }^{39}$

The transport infrastructure and the transport connections have a decisive role in the operation of national economy and in the provision of the interregional connections.
The calculation and accounting of the interregional accessibilities can be made on the basis of "general transport costs (impedances)" characteristic for good transport:

$$
\begin{aligned}
& T C_{\mathrm{ij}}=x \text { road transport costs }+y \cdot \text { rail transport costs } \\
& \mathrm{TC}_{\mathrm{ij}}=\mathrm{x} \cdot\left(\mathrm{a}_{1} \cdot \mathrm{HC}_{\mathrm{ij}}+\mathrm{b}_{1} \cdot \mathrm{HT}_{\mathrm{ij}}\right)+\mathrm{y} \cdot\left(\mathrm{a}_{2} \cdot \mathrm{RC}_{\mathrm{ij}}+\mathrm{b}_{2} \cdot \mathrm{RT}_{\mathrm{ij}}\right)
\end{aligned}
$$

The transport costs consist of road and rail transport costs (HC, RC) and time (HT, RT) among counties. These costs should be expressed in generalized, monetary terms (HUF) of which an average is derived $(x+y=1)$ (the transport time could be omitted, $b_{1}=b_{2}=0$).
The coefficients (a, b) and the weighting factors (x, y) were determined by expert estimations, since there is no way in this framework to conduct surveys.
The time and cost values among regions (counties) are calculated by deriving an average of route impedances provided by road and rail traffic model. These models calculate impedances at each county pairs for several node pairs (p, q) along the length (L_{pq}) of the possible routes (R_{pq}), which is a set of individual links (s), by considering the road and rail line characteristics (k) according to the followings (see the figures as well):

$$
L_{p q, k}=\sum_{s \in R_{p q}} l_{s, k} ; \text { average distance between counties: } L_{i j, k}=\frac{1}{n} \sum_{p} \sum_{q} L_{p q, k}
$$

The transport costs among counties are supplied in a matrix having 20×20 cells for the 'present' and the dates (t - year) according to the operation horizon (2010 and 2020) of the models, supplemented with a set of matrices containing values for cells among border sections and counties.
The cost matrices ($T C_{i j, v, t}$) can be calculated for several scenarios taking into account the key infrastructure elements (motorway, highway and rail line investments) according to the governmental plans. These matrices are inputs to the economic model parts.

[^28]

1. Figure Hungarian road network model

2. Figure Hungarian rail network model

Calculation of generalised transport costs: (forwarding costs+time costs)
in road transport: (the explanations of the formulas see in Table 1)
for industrial goods: $\quad \mathrm{GIVH}_{\mathrm{ij}}=\mathrm{FIVH}_{\mathrm{ij}} \cdot\left(\mathrm{DH}_{\mathrm{ij}} \cdot \mathrm{CIVH}+\mathrm{TH}_{\mathrm{ij}} \cdot \mathrm{KIVH}\right)$
[EUR]
for agricultural goods: $\mathrm{GAVH}_{\mathrm{ij}}=\mathrm{FAVH}_{\mathrm{ij}} \cdot\left(\mathrm{DH}_{\mathrm{ij}} \cdot \mathrm{CAVH}+\mathrm{TH}_{\mathrm{ij}} \cdot \mathrm{KAVH}\right) \quad$ [EUR]
$\mathrm{DH}=$ distance on road; $\mathrm{TH}=$ transport time on road

in rail transport:

for industrial goods $\quad \mathrm{GIVR}_{\mathrm{ij}}=\mathrm{FIVR}_{\mathrm{ij}} \cdot\left(\mathrm{DR}_{\mathrm{ij}} \cdot \mathrm{CIVR}+\mathrm{TR}_{\mathrm{ij}} \cdot \mathrm{KIVR}\right)$
for agricultural goods: $\mathrm{GAVR}_{\mathrm{ij}}=\mathrm{FAVR}_{\mathrm{ij}} \cdot\left(\mathrm{DR}_{\mathrm{ij}} \cdot \mathrm{CAVR}+\mathrm{TR}_{\mathrm{ij}} \cdot \mathrm{KAVR}\right)$
[EUR]
$\mathrm{DR}=$ distance on rail; $\mathrm{TR}=$ transport time on rail
in transport general
for industrial goods
$\mathrm{GIV}_{\mathrm{ij}}=\mathrm{a} * \mathrm{GIVH}_{\mathrm{ij}}+\mathrm{b} * \mathrm{GIVR}_{\mathrm{ij}}$
[EUR]
where: $\mathrm{a}+\mathrm{b}=1.0 ; \mathrm{a}=0.74$ and $\mathrm{b}=0.26$ proportion by KSH data*
for agricultural goods: $\mathrm{GAV}_{\mathrm{ij}}=\mathrm{c} * \mathrm{GAVH}_{\mathrm{ij}}+\mathrm{d}^{*} \mathrm{GAVR}_{\mathrm{ij}}$
[EUR]
where $\mathrm{c}+\mathrm{d}=1.0 ; \mathrm{c}=0.67$ and $\mathrm{d}=0.33$ proportion by KSH data ${ }^{* 40}$

Transported good values

for industrial goods value:

$$
\mathrm{FIV}_{\mathrm{ij}}=\left(\mathrm{FIVH}_{\mathrm{ij}}+\mathrm{FIVR}_{\mathrm{ij}}\right)
$$

[kEUR]
for agricultural goods value:

$$
\mathrm{FAV}_{\mathrm{ij}}=\left(\mathrm{FAVH}_{\mathrm{ij}}+\mathrm{FAVR} \mathrm{ij}_{\mathrm{ij}}\right)
$$

[kEUR]
Transport cost ratios: (generalised transport costs/good value):
the generalised cost ratio for industrial goods: $\quad \operatorname{RIV}_{\mathrm{ij}}=\mathrm{GIV}_{\mathrm{ij}} / \mathrm{FIV}_{\mathrm{ij}}$
the generalised cost ratio for agricultural goods: $\quad \mathrm{RAV}_{\mathrm{ij}}=\mathrm{GAV}_{\mathrm{ij}} / \mathrm{FAV}_{\mathrm{ij}}$

Input data		Industry(I)	Agriculture(A)	Comments	Volumes	Dimension
Flows (F) in tons	on road (H)	FITH	FATH	from ETIS	291896440	[tons]
in tons	on rail (R)	FITR	FATR	ETIS	24682299	[tons]
Flows (F) in kEUR	on road	FIVR	FAVH	ETIS*	4843288	[kEUR]
	on rail	FIVR	FAUR	ETIS*	866032	[kEUR]
Unit forwarding costs (C)/ton $\cdot \mathrm{km}$	on road	CITH	CATH	fom TNO	0.06	[EUR/ton km]
	on rail	CITR	CATR	TNO	0.03	[EUR/ton km]
Unit forwarding costs (C)/ kEUR .	on road	CIVH	CAVH	TRANSMAN*	3,6**	[EUR/kEUR•km]
	on rail	CIVR	CAVR	TRANSMAN*	0,72 **	[EUR/kEUR•km]
Unit time costs (K)/ton • hour	on road	KITH	KATH	fom TNO	3	[EUR/ton • hour]
	on rail	KITR	KATR	TNO	1	[EUR/ton • hour]
Unit time cost EUR/kEUR • hour	on road	KIVH	KAVH	TRANSMAN*	180,00 **	[EUR/kEUR• hour]
	on rail	KIVR	KAVR	TRANSMAN*	27,00 **	[EUR/kEUR• hour]

*after transformation of ETIS and TNO data
**at the HU forwarding cost 67% and the time cost 33% of the NL levels had been considered
1.Table Transport cost calculation for SCGE (Hungary)

Differentiation of average unit costs

The real transport fees are degressive by distance and time. To avoid getting overproportional cost on the longer distance and time a modification had been made.

[^29]For the calculation of degressive transport fees we took into consideration a factor (f) to modify the average unit transport fees, which was calculated as follows:

$$
\mathrm{f}_{1}=\mathrm{e}^{-\alpha(\mathrm{X}-50)}
$$

Where:
X : distance in km on road (DH) and on rail (DR)
$\alpha \quad$ constant parameter is 0.0015
The formula and figure says that it had been assumed the average unit cost is until 50 km , further there is a decrease, which results degressive total transportation cost ratio by distance. For the time cost calculation we also used a similar equation:

$$
\mathrm{f}_{2}=\mathrm{e}^{-\beta(\mathrm{Y}-1)}
$$

Where:
$\mathrm{Y}: \quad$ is the time in hours on road (TH) and on rail (TR)
β : constant parameter
0.05 for road time cost and 0.01 for rail time cost

The average unit forwarding cost and time cost (see Table 1) had been multiplied by the factors $\mathbf{f}_{\mathbf{1}}$ and $\mathbf{f}_{\mathbf{2}}$ at the calculation of the distance and time depending transportation costs.

Time depending unit time cost ratios end total time value ratios for road

Time depending unit time cost ratios and total time value ratios for rail

The results of the calculations for industrial and agricultural goods by rail and road transport as well for the whole transport can be seen in the attached Tables 2-9.
The last two Tables 10 and 11 contain the transport cost/transported good flow values ratios are input data for the SGE model.
In this results there are included beside times also "technological times" on the road +2 hours and on the rail +24 hours. That is the explanation, that the ratios are relatively high. Therefore calculations had been done also without these technological times, the results can be seen in Tables 12 and 13, the ratios are substantially lower then in the previous case.
The changes of the accessibilities because of developments of the road and rail infrastructure in the future will influence also the transportation costs and further the results of the economy models.

2. Table Forwarding costs for industrial goods on road [Euro] (GIVH forwarding cost part)

3. Table Time costs for industrial goods on road [Euro] (GIVH time costs part)

4. Table Forwarding costs for agricultural goods on road [Euro] (GAVH forwarding costs part)

5. Table Time costs for agricultural goods on road [Euro] (GAVH time costs part)

6. Table Forwarding costs for industrial goods on railway [Euro] (GIVR forwarding costs part)

7. Table Time costs for industrial goods on railway [Euro] (GIVR time costs part)

8. Table Forwarding costs for agricultural goods on railway [Euro] (GAVR forwarding costs part)

9. Table Time costs for agricultural goods on railway [Euro] (GAVR time costs part)

kód	megyék	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	Budapest	11.55	40.92	30.19	43.53	37.58	39.42	22.74	36.89	41.56	25.12	21.83	24.52	15.11	34.80	45.54	28.86	32.04	43.69	33.83	42.59
2	Baranya	41.72	16.53	32.03	55.78	59.80	45.77	35.93	51.17	37.56	53.33	46.90	53.40	42.66	26.87	42.11	31.12	23.57	46.89	40.83	37.31
3	Bács-Kiskun	31.58	31.11	18.60	36.66	28.80	25.90	24.64	43.39	41.96	22.51	31.84	25.22	26.69	39.05	49.42	25.42	24.73	46.26	33.94	41.83
4	Békés	45.96	54.00	36.66	17.23	27.11	26.37	39.66	52.39	25.68	24.40	41.60	26.55	42.00	57.54	37.45	22.67	48.81	55.20	45.52	53.14
5	Borsod-Abakj-Zem	37.53	38.07	33.97	31.64	13.63	36.70	25.90	46.61	26.91	17.96	26.00	23.82	37.10	35.82	23.67	30.86	34.96	49.53	28.85	48.94
6	Csongrád	41.68	44.38	25.92	26.38	30.74	17.81	34.00	50.10	38.60	25.33	38.70	27.99	37.32	50.51	46.96	26.51	38.87	51.64	41.36	48.51
7	Fejér	23.00	31.46	28.71	46.72	20.79	39.91	15.41	30.99	22.54	16.85	20.02	17.27	24.86	21.97	24.66	17.35	20.94	36.74	20.65	34.83
8	Györ-Moson-Sopron	36.36	51.71	47.64	57.60	49.18	55.00	32.55	17.97	57.69	42.93	25.63	42.16	39.07	41.65	59.66	49.83	44.13	23.90	26.18	34.19
9	Hajdú-Bihar	39.75	40.06	41.83	25.68	29.95	38.67	34.73	45.52	16.95	32.79	34.74	41.73	37.78	40.19	23.26	29.25	37.99	47.93	38.42	47.26
10	Heves	24.92	34.39	26.60	28.91	17.96	30.44	20.82	40.70	29.72	14.12	20.47	18.94	21.79	31.50	34.31	23.13	29.99	44.92	24.75	44.09
11	Komárom-Esztergom	21.99	41.02	37.57	49.20	20.42	45.62	20.02	24.27	22.62	16.38	12.62	16.06	23.36	32.44	23.83	17.46	31.57	36.60	26.52	38.6
12	Nógrád	24.42	34.43	29.93	31.85	23.88	33.64	20.66	39.73	37.80	18.95	19.25	12.34	22.79	31.26	40.79	30.86	29.96	44.27	24.54	43.75
13	Pest	15.12	41.89	25.53	40.00	37.12	35.32	24.54	39.63	39.52	21.85	23.12	22.84	15.45	37.46	44.67	22.09	33.19	45.55	36.10	44.67
14	Somogy	35.60	26.86	40.20	59.31	56.01	52.05	25.00	41.22	37.81	48.78	36.83	48.32	38.28	18.37	40.68	31.11	24.72	35.57	26.34	23.49
15	Szabolcs-Szatmár-	43.73	43.78	49.12	37.43	25.99	47.13	37.30	47.24	23.26	37.84	37.11	44.91	42.67	42.25	18.25	40.39	41.53	49.26	40.06	48.77
16	Jász-Nagykun-Szolnok	27.63	33.69	25.39	22.69	33.86	26.51	27.14	39.81	29.23	25.37	27.35	34.03	21.22	33.85	40.35	17.18	29.64	42.96	32.47	42.09
17	Tolna	32.65	23.60	25.46	50.25	54.91	40.01	23.78	43.74	35.45	46.22	36.04	46.31	33.84	24.77	39.82	27.31	16.72	45.50	33.16	37.55
18	Vas	43.18	47.33	50.64	60.56	52.32	56.69	38.63	23.91	60.80	47.47	38.62	47.04	44.97	35.91	62.44	53.90	45.87	15.94	24.90	22.49
19	Veszprém	34.33	35.52	40.40	54.40	23.08	49.36	20.65	24.88	25.45	19.81	26.52	20.30	36.60	23.14	26.87	20.51	28.85	23.69	14.60	20.74
20	Zala	42.21	37.65	46.06	58.62	51.70	53.30	36.62	34.16	59.81	46.59	40.66	46.43	44.13	23.73	62.01	52.65	37.82	22.48	21.76	15.85

10. Table Generalised cost/goods flow value ratios for industrial goods [-] (RIV)

kód	megyék	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	Budapest	10.73	44.76	30.18	43.66	39.13	39.51	22.93	38.86	45.52	25.96	21.95	25.28	14.10	38.01	49.86	31.40	34.95	46.13	34.40	44.94
2	Baranya	44.72	14.84	28.53	49.47	57.66	40.69	30.21	45.52	58.90	51.49	39.19	51.49	45.78	23.98	64.57	48.89	21.04	41.71	34.25	33.32
3	Bács-Kiskun	30.22	29.91	16.69	32.71	24.06	23.18	28.65	47.95	39.99	19.45	37.97	21.40	25.52	37.57	46.99	24.28	23.76	50.90	40.58	46.26
4	Békés	44.12	52.13	32.73	15.49	22.64	23.58	47.40	58.26	24.58	20.68	50.14	22.47	40.29	55.56	35.76	21.68	47.02	61.33	55.18	59.01
5	Borsod-Abakj-Zem	40.11	58.31	44.09	40.60	15.34	46.81	47.34	58.28	28.36	20.81	46.23	27.85	39.53	54.99	24.94	32.49	53.45	61.95	53.66	61.13
6	Csongrád	40.00	42.78	23.20	23.58	25.29	15.99	40.13	55.64	36.83	21.57	46.53	23.53	35.77	48.71	44.72	25.32	37.36	57.16	49.89	53.69
7	Fejér	22.85	33.44	28.81	47.34	48.12	40.34	15.19	30.99	52.05	37.78	19.88	37.13	24.80	23.22	56.06	39.67	22.12	36.81	20.52	34.86
8	Györ-Moson-Sopron	39.22	47.70	49.73	60.29	56.25	57.57	31.87	15.87	61.46	49.01	25.02	47.65	42.18	38.46	63.68	53.37	40.76	20.97	25.57	29.73
9	Hajdú-Bihar	45.33	57.46	45.23	27.34	23.40	41.48	49.26	59.39	15.96	25.27	48.94	31.99	43.12	57.61	21.99	27.72	53.77	62.55	55.22	61.60
10	Heves	26.35	52.27	34.04	37.04	20.81	38.74	36.92	50.55	31.48	16.04	35.22	22.17	22.94	47.68	36.33	24.32	45.25	56.05	45.18	54.90
11	Komárom-Esztergom	21.82	43.72	38.02	49.93	46.96	46.28	19.88	24.25	51.69	36.03	12.33	33.08	23.23	34.39	55.29	39.98	33.55	36.74	26.46	38.71
12	Nógrád	25.74	52.31	38.64	41.05	27.88	43.36	36.45	49.23	40.12	22.18	32.45	13.73	24.03	47.22	43.29	32.70	45.35	55.17	44.65	54.44
13	Pest	14.11	45.81	25.46	40.06	38.64	35.35	24.86	41.68	43.31	22.53	23.35	23.58	14.43	40.92	48.96	23.81	36.17	48.10	36.74	47.14
14	Somogy	38.09	23.97	35.74	52.59	54.05	46.23	21.21	36.73	59.03	47.10	31.01	46.56	41.01	16.46	62.13	48.72	22.06	31.76	22.27	21.06
15	Szabolcs-Szatmár-	49.67	62.82	53.33	40.19	20.30	50.62	53.06	61.59	21.99	29.13	52.38	34.38	48.77	60.62	17.20	38.31	59.31	64.33	57.51	63.61
16	Jász-Nagykun-	31.31	47.77	27.15	24.04	26.25	28.38	37.72	51.61	27.72	19.87	38.03	26.22	23.72	47.71	38.31	16.18	41.12	55.91	46.18	54.67
17	Tolna	34.87	21.07	22.69	44.59	52.97	35.62	20.18	38.95	55.17	44.61	30.37	44.63	36.14	22.10	61.15	41.99	15.00	40.48	27.95	33.52
18	Vas	46.67	43.69	52.83	63.36	59.85	59.30	37.90	20.97	64.74	54.34	37.87	53.45	48.72	33.18	66.56	57.80	42.37	14.15	24.30	19.75
19	Veszprém	34.31	37.81	40.85	55.23	54.57	50.08	20.52	24.88	58.39	46.19	26.47	45.52	36.66	24.55	60.79	48.67	30.73	23.65	14.35	20.65

11. Table Generalised cost/goods flowvalue ratios for agricultural goods [-] (RAV)

kód	megyék	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	Budapest	2.92	33.65	22.08	35.95	29.96	31.62	14.47	29.29	34.23	17.10	13.56	16.49	6.48	27.20	38.37	21.13	24.42	36.40	25.94	35.26
2	Baranya	34.39	7.87	23.67	48.44	53.08	37.94	27.93	43.87	31.55	46.30	39.35	46.39	35.36	18.32	36.37	24.74	14.91	39.34	33.07	29.36
3	Bács-Kiskun	23.31	22.86	9.93	28.46	22.48	17.31	17.13	36.40	34.74	15.91	24.61	18.73	18.25	31.10	42.58	17.51	16.26	39.45	26.83	34.80
4	Békés	38.25	46.73	28.46	8.56	20.72	17.80	32.78	45.88	17.79	17.87	34.81	20.14	34.14	50.45	30.06	14.67	41.29	48.94	38.99	46.76
5	Borsod-Abakj-Zem	29.91	32.12	27.33	24.91	5.88	30.19	19.73	40.12	19.08	10.21	19.83	16.29	29.49	29.68	15.71	23.15	28.80	43.26	22.88	42.64
6	Csongrád	33.74	36.65	17.34	17.80	24.53	9.14	26.89	43.43	31.24	18.87	31.76	21.65	29.27	43.06	40.01	18.66	30.93	45.17	34.64	41.84
7	Fejér	14.68	23.89	20.67	39.41	14.91	32.32	7.14	23.12	16.75	10.77	11.75	11.20	16.60	14.03	18.98	11.31	12.98	29.11	12.38	27.14
8	Györ-Moson-Sopron	28.77	44.38	40.42	50.89	42.58	48.10	24.52	9.45	51.09	36.02	17.34	35.26	31.62	33.86	53.20	42.84	36.42	15.44	17.91	26.08
9	Hajdư-Bihar	32.55	33.97	34.62	17.79	21.79	31.32	28.35	39.32	8.37	24.73	28.35	34.02	30.51	34.04	14.70	20.88	31.75	41.93	32.27	41.21
10	Heves	16.89	28.21	19.63	22.03	10.22	23.64	14.41	33.91	21.96	6.37	14.05	11.20	13.65	25.10	26.73	15.15	23.57	38.38	18.54	37.51
11	Komárom-Esztergom	13.66	33.85	29.84	41.99	14.53	38.19	11.74	16.16	16.82	10.30	4.35	9.95	15.05	24.89	18.14	11.43	24.01	28.96	18.44	31.08
12	Nógrád	16.39	28.27	23.09	25.11	16.34	26.98	14.26	32.94	30.38	11.21	12.80	4.58	14.69	24.88	33.48	23.15	23.56	37.72	18.35	37.16
13	Pest	6.49	34.65	17.24	32.27	29.50	27.38	16.33	32.15	32.13	13.70	14.87	14.74	6.82	29.98	37.48	14.06	25.59	38.35	28.31	37.44
14	Somogy	27.95	18.30	32.15	52.15	49.02	44.51	16.60	33.46	31.76	41.45	28.85	40.99	30.76	9.72	34.76	24.74	16.10	27.57	18.03	15.06
15	Szabolcs-Szatmár-	36.67	37.96	42.28	30.04	17.71	40.19	31.06	41.16	14.70	29.96	30.86	37.32	35.60	36.25	9.66	32.44	35.52	43.38	34.04	42.85
16	Jász-Nagykun-Szolnok	20.02	27.21	17.48	14.69	25.84	18.66	20.41	33.27	20.86	17.06	20.64	26.02	13.32	27.35	32.40	8.60	22.96	36.63	26.02	35.72
17	Tolna	24.95	14.94	16.88	42.64	47.90	31.96	15.34	36.06	29.31	38.83	28.04	38.94	26.18	16.15	33.88	20.75	8.06	37.91	25.10	29.63
18	Vas	35.91	39.75	43.61	54.12	45.95	50.02	30.84	15.45	54.44	40.82	30.82	40.40	37.80	27.88	56.22	47.17	38.24	7.42	16.58	13.98
19	Veszprém	26.39	28.15	32.82	47.51	17.37	42.23	12.38	16.79	19.83	13.91	18.43	14.40	28.77	15.29	21.36	14.67	21.21	15.55	6.32	12.53
20	Zala	34.91	29.67	38.80	52.07	45.30	46.41	28.76	26.06	53.41	39.91	32.95	39.74	36.94	15.26	55.75	45.88	29.86	13.97	13.35	7.33

12. Table Generalised cost/goods flow value ratios for industrial goods ${ }^{41}[-]$ (RIV)
${ }^{41},{ }^{3}$ Without technological times

kód	megyék	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	Budapest	2.77	37.69	22.50	36.52	31.78	32.13	15.05	31.53	38.39	18.19	14.06	17.50	6.14	30.58	42.88	23.83	27.50	39.12	26.90	37.89
2	Baranya	37.64	6.94	20.89	42.74	51.33	33.54	22.84	38.74	52.55	44.86	32.22	44.88	38.74	16.18	58.57	41.99	13.14	34.71	27.10	25.96
3	Bács-Kiskun	22.55	22.22	8.79	25.23	17.32	15.35	20.97	41.08	33.03	12.45	30.63	14.49	17.68	30.17	40.39	16.66	15.87	44.22	33.38	39.35
4	Békés	36.98	45.39	25.25	7.58	15.83	15.76	40.49	51.91	16.97	13.74	43.35	15.63	33.00	48.99	28.63	13.97	40.03	55.26	48.68	52.80
5	Borsod-Abakj-Zem	32.73	51.98	37.14	33.53	7.41	40.02	40.35	51.78	20.70	12.88	39.22	20.13	32.16	48.38	17.16	24.95	46.83	55.70	46.99	54.83
6	Csongrád	32.64	35.58	15.38	15.76	18.64	8.08	32.92	49.12	29.74	14.69	39.55	16.75	28.30	41.78	38.02	17.75	29.97	50.85	43.14	47.14
7	Fejér	14.97	25.99	21.13	40.40	41.10	33.12	7.27	23.44	45.25	30.39	11.97	29.75	16.97	15.39	49.43	32.41	14.26	29.50	12.60	27.49
8	Györ-Moson-Sopron	31.87	40.90	42.84	53.94	49.74	51.02	24.30	8.04	55.16	42.16	17.21	40.80	34.96	31.24	57.53	46.67	33.61	13.20	17.77	22.27
9	Hajdư-Bihar	38.21	51.11	38.22	19.62	15.95	34.32	42.49	53.09	8.00	17.88	42.16	24.90	35.93	51.17	14.06	19.97	47.21	56.50	48.76	55.49
10	Heves	18.54	45.62	26.68	29.82	12.88	31.60	29.55	43.69	23.91	8.11	27.82	14.25	15.02	40.74	28.93	16.51	38.27	49.48	38.15	48.28
11	Komárom-Esztergom	13.93	36.69	30.66	43.09	39.92	39.22	11.97	16.47	44.87	28.61	4.42	25.59	15.37	26.95	48.64	32.75	26.11	29.42	18.72	31.47
12	Nógrád	17.93	45.69	31.45	33.98	20.16	36.39	29.09	42.36	32.89	14.26	24.98	5.80	16.16	40.27	36.17	25.18	38.40	48.60	37.62	47.82
13	Pest	6.15	38.77	17.61	32.77	31.28	27.85	17.04	34.47	36.11	14.63	15.48	15.74	6.47	33.62	41.97	15.93	28.74	41.19	29.33	40.19
14	Somogy	30.68	16.16	28.39	46.02	47.46	39.33	13.50	29.54	52.60	40.18	23.68	39.64	33.73	8.56	55.87	41.83	14.19	24.36	14.64	13.26
15	Szabolcs-Szatmár-	42.70	56.82	46.72	32.98	12.73	43.89	46.46	55.44	14.06	21.91	45.77	27.39	41.79	54.35	9.25	30.96	53.06	58.41	51.19	57.64
16	Jász-Nagykun-	23.74	40.88	19.42	16.19	18.91	20.71	30.49	44.91	19.97	12.28	30.83	18.87	15.85	40.79	30.96	8.23	33.94	49.46	39.32	48.17
17	Tolna	27.41	13.17	14.86	37.63	46.35	28.28	12.44	31.83	48.60	37.63	23.02	37.67	28.71	14.23	54.89	34.79	7.10	33.44	20.54	26.18
18	Vas	39.65	36.67	46.14	57.29	53.59	52.98	30.57	13.20	58.69	47.78	30.53	46.89	41.81	25.73	60.65	51.37	35.31	6.32	16.45	11.93
19	Veszprém	26.81	30.57	33.65	48.72	47.89	43.32	12.60	17.11	51.93	39.15	18.73	38.49	29.26	16.82	54.46	41.81	23.21	15.84	6.44	12.75
20	Zala	38.45	27.38	41.04	55.03	52.80	49.12	28.50	22.27	57.65	46.69	32.61	46.17	40.83	14.08	59.89	49.95	27.58	11.93	13.24	6.23

13. Table Generalised cost/goods flow value ratios for agricultural goods ${ }^{42}[-]$ (RAV)
${ }^{42}$ Without technological times

Appendix 5: The transportation cost matrices ${ }^{43}$

Three transport cost matrices are included in the software. These matrices represent road networks of Hungary in 2003, 2006 and 2012 according to the following systems.

3. figure Road network model for 2003

[^30]
4. figure Road network model for 2006

5. figure Road network model for 2013

Appendix 6: Generalised cost indicator calculation ${ }^{44}$

For the Hungarian economy the export-import relations are very important. The main direction of the foreign trade is toward the EU-countries, so an important "gate" is the Austrian border, where Hegyeshalom is the main border station. Therefore it is necessary to know the accessibility of Hegyeshalom board from the 20 different counties in order to plan the export-import activity toward the EU countries. The changes of the accessibilities because of developments of the road infrastructure in the future will influence also the transportation costs and further the results of the economic models.

The nationwide road network model TRANSWAY is applicable to calculate these indicators.

6. figure Road network model for 2003

For the time period between 2003 and 2034 TRANSMAN developed four different road network models. One for 2003, 2006, 2013 and one for 2034.

[^31]
7. figure Road network model for 2006

The transportation time between Hegyeshalom and any other point of Hungary is influenced by two contradictory factors. Developing the transport infrastructure, building new motorways and roads decreases the transportation time. But on the same time the developing economy generates new transport demands, causing increasing transportation time.

8. figure Road network model for 2013

After the assignment of the traffic flows on the transport network (with different demand matrices) the model calculates four different transportation time matrices. For our purposes we need only one row of the matrices, which contains the transportation times to Hegyeshalom from 20 counties of Hungary.(14. table)

14. table Transportation time for different network variants [min]

	Budapes	Et Baran	Bás-Kiskun	Beke	Abaij-Zen	m csongrad		\|Moson-1	硡		eves	Estereol	Nograd	Pest	St Somogy	Szatmár-	Nagkkun-	Tolna		Veszprém	Zala
time cost tor 1000ϵ	$\stackrel{295}{96}$	$\frac{391}{13}$	$\stackrel{409}{17}$	$\frac{573}{17}$	${ }^{521}$	+ ${ }^{517} 19$	${ }^{249}$	${ }^{41}$	$\frac{588}{24}$	$\frac{438}{11}$		${ }^{195}$	$\frac{436}{13}$	${ }_{4}^{317}$	$\frac{263}{24}$	$\frac{627}{17}$	${ }^{478}{ }^{17}$	${ }^{346}$	1	$\frac{191}{6}$	$\frac{166}{4}$

15. table Time cost calculation for 2003 [€]

The 15. table shows the time cost calculation for 2003. The time costs are in the first row of the table. In the second row are the weighted time costs for every county. Summing up these values we can get a so called "generalised cost indicator" (GCIH, Generalised Cost Indicator for Hungary) for the whole country , for each network variants. For 2003 the indicator (GCIH) is $332 €$.

$$
\mathrm{GCIH}=\sum_{\mathrm{i}=1}^{\mathrm{i}=20} \alpha * \mathrm{GDPW}_{\mathrm{i}} * \mathrm{TH}_{\mathrm{i}} * \mathrm{KH} * \mathrm{VOG} ;
$$

Where:

i:	number of counties (from 1 to 20)
TH:	Transport time on road (Highways) [hour]

KH: Unit time cost (K) on road (Highway) $\quad 60.00^{45}[€ / \mathrm{k} € \mathrm{~h}]$
VOG: Value Of Goods transported [1000 €]
$\alpha: \quad$ Total cost and time cost ratio [-]

9. figure The weighted time cost of counties by GDP for 2003 [$€$]

The figure shows that Budapest has a big weight because of its high ratio of GDP. Calculating these indicators for every network variant we get an indicator set representing the whole country for different years.
16. table

Years	AlH before regression	AlH after regression
2003	332	330
2006	326	328
2013	yindicators_far_324	3

[^32]
10. figure Diagram and trendline of accessibility indicator (GCIH) (first year is 1991)

As one can see on this figure the accessibility of Hegyeshalom is slightly getting better, because the access time is decreasing. This is because developing of the road transport infrastructure is faster then the forcasted transport demand. You also can see the function of the trendline of GCIH in the following line.

$$
\mathrm{y}=-0.6013 * \mathrm{t}+338.09 \quad \mathrm{t}=1 \quad \text { for } 1991 \text { year }
$$

Using this function you can easily calculate the indicators (GCIH) for different time, as you can see in the 16. table the indicators before and after regression. But of course you have to take into consideration that the valid time interval is limited. You must not use this function before 1996 and after 2015.

Appendix 7: The effect of CSF support: both EU and Hungarian cofinancing is accounted for

[^0]: ${ }^{1}$ For a systematic overview of the subject see Reamer, Icerman and Youtie 2003

[^1]: ${ }^{2}$ For more details see Varga (2006)

[^2]: ${ }^{3}$ The functional form corresponds to the Jones (1995) version, however, the interpretation of λ and φ is different in this paper.

[^3]: ${ }^{4}$ This section draws on section 2.3 in Schalk and Varga (2004)

[^4]: ${ }^{5}$ The production function has the following form: $\mathrm{Y}=\mathrm{AK}^{\alpha} \mathrm{L}^{1-\alpha}$, where Y is regional output measured by regional GDP at 1995 prices, A is total factor productivity, K is capital, L is labor. The value of K is calculated from investment data following the perpetual inventory method (Hall and Jones 1999). The starting value of K in 1995 is calculated using the formula of $\mathrm{I}_{95} /(\mathrm{g}+\delta)$ where I_{95} is investment in $1995, \mathrm{~g}$ is calculated as the average growth rate from 1995 to 2000 of the investment series and δ is the depreciation rate for which (as it is in the macro-econometric model) we assumed the value of 0.10 which is in line with international standards and also used by the OECD in estimation of potential output growth for Hungary (OECD 2000). The values of the parameters in the production function are assumed to be equal to the income shares of K and L (with α is 0.33). To determine the values of TFP we followed the formula of $\mathrm{A}=\mathrm{Y} / \mathrm{Y}^{\prime}$, where $\mathrm{Y}^{\prime}=\mathrm{K}^{\alpha} \mathrm{L}^{1-\alpha}$.

[^5]: ${ }^{6}$ This heteroscedasticity is caused to a large extent by the determining role of Budapest in the Hungarian economy. We also tried to capture the „Budapest effect" by a dummy variable. This variable remained insignificant suggesting that the applied regression technique sufficiently takes care of the heteroscedasticity problem of the data. Fur further discussions on the heteroscedasticity problem caused by the „Budapest effect" and its treatment in knowledge production function-type regression analyses see Varga (2007). Note that according to the Hungarian National Development Plan (2007-2013) the main focus of government support will not be Budapest. As such the funds targeting the capital are relatively small in size and their effects are also not expected to be decisive.
 ${ }^{7}$ Since the data have both space and time dimensions we also tested for cointegration. The D-W test refused non-cointegration of the data at the 1% significance. The short length of the time series does not allow us to run the Dickey-Fuller test.
 ${ }^{8}$ For the calculations we used the scenario data provided by the National Development Agency and presented in details in Chapter 7. Elasticities were calculated for each year and then averaged over the planning period.
 ${ }^{9}$ As will be detailed below the regional TFP equation is used to predict TFP levels at the national level. These TFP levels enter the macro sub-model to produce simulated values of several macro level variables. Macro level TFP is calculated as weighted averages of regional TFP levels (where regional TFP level is the sum of the TFP level at the previous period and the change of TFP predicted by the TFP function). Regional employment is used to weight regional TFP levels. The aim behind weighted averaging regional TFP was to account for the effects of

[^6]: agglomeration in the change of technology (Schalk and Varga 2004). This procedure provides very close estimates of the national TFP level as the MAPE of observed national and calculaetd national TFP levels via weighting regional TFPs is 1.23 percent.
 ${ }^{10}$ A rule of thumb in practice is that MAPE below 5 percent is considered as the sign of a very good fit.

[^7]: ${ }^{11}$ This chapter draws on the description of the RAEM-Light model in Koike and Thissen (2005).

[^8]: ${ }^{12}$ A very similar value, 1.6 percent was reported for Hungary for the 1990s in Campos and Coricelli (2002). However, in Darvas and Simon (1999) a higher average value, 3.7 percent was calculated for the 1990s whereas Révész ended up with a much lower value, 0.3 percent for the 1999-2003 period.

[^9]: ${ }^{13}$ Both A' and γ are estimated econometrically from the equation: $\mathrm{A}=\mathrm{A}^{\prime} \mathrm{L}^{\gamma}$. Estimated parameter values are presented in Tab. 4.1. The logic behind this equation is that the level of technology at a given region is partly determined by an "average" (national) component measured by A'. Regional differences are captured by L via the estimated parameter of γ.

[^10]: ${ }^{14}$ This section updates section 3 in Schalk and Varga 2004.

[^11]: ${ }^{15}$ With production function (4) there is a clear relationship between Total Factor Productivity TFP and labor efficiency ELEFFU: TFP $=$ ELEFFU $^{\alpha}$. Thus we can treat both technology concepts here synonymously, which is done throughout the text in the following.

[^12]: ${ }^{16}$ Total Factor Productivity is given by: TFP $=$ ELEFFU $^{\alpha}=\mathrm{e}^{\alpha \cdot \lambda \text { TIME }}$. Thus, the growth rate of TFP is the growth rate of labor efficiency multiplied by the partial production elasticity of labor.

[^13]: ${ }^{17}$ See the equation system in the appendix for further information.

[^14]: ${ }^{18}$ This section updates Schalk and Varga (2004) 7.2.2.

[^15]: ${ }^{19}$ Note that the mechanism of the impact of a change in TFP on output, K and L follows the same logic both at the macro level (Fig. 2.2) and at the regional level. In both models the impact on K and L depends on the relative strengths of the output and substitution effects.

[^16]: ${ }^{20}$ Sensitivity analyses on demand and supply side schocks in the macromodel reported in Schalk and Varga (2004) are not repeated here.

[^17]: ${ }^{21}$ The same amount of CSF expenditures were used in the simulations as presented in the next chapter. Aggregate values as well as their distribution between infrastructure and human resources support are taken as fixed and only geographic distributions are changed.

[^18]: ${ }^{22}$ The reason for this is that RAEM-Light calculates inputs in monetary terms: the portion of income to labor measures labor and the rest of output measures capital. Scarcely available capital data provides the rationale for this solution. This decision influences the size of output as it will be the result of labor and capital inputs defined above and this value will be definitely higher than its observed counterpart.

[^19]: ${ }^{23}$ This practically means that for each year SCGE predicted values are divided by the percent of prediction in the MACRO model (and divided by 100).

[^20]: ${ }^{24} \mathrm{~A}$ simple example of a liner model is $\mathrm{y}=\mathrm{ax}$. If x is 50 in the baseline then if this is increased by 100 percent (a support of 50 let's call it scenario 1) the effect is a 100 percent higher y (i.e., $((100 a-50 a) / 50 a))=1)$. Similarly if support is decreased by 50 percent to 75 (scenario 2) the effect will be 0.5 (i.e., $((75 a-50 \mathrm{a}) / 50 \mathrm{a})=0.5)$ that is a 50 percent smaller effect than that of scenario 1 . This is very much the way the complex model system behaves. Furthermore in linear models changes in the model itself do not affect scenario predictions. In our simple example the increase of the parameter to 2 a does not alter scenario results. This is 1 in scenario 1 (i.e., ((200a$100 \mathrm{a}) / 100 \mathrm{a})=1)$ and 0.5 in scenario 2 (i.e., $((150 \mathrm{a}-100 \mathrm{a}) / 100 \mathrm{a})=0.5$.)

[^21]: ${ }^{25}$ Note that in the followings we analyse the macro and regional effects generated by support from EU funds. This means that Hungarian co-finance is being subtracted from the total of NDP II expenditures. The procedure to subtract Hungarian co-financing was governed by the principle of additionality. According to this the government should not spend less in the areas where the EU supports the country than she spent during the 2004-2006 period on average. This basically means that Hungarian co-financing (which is on average 15 percent of the total support of the projects) covers government spending that would have been done without support from the EU. Since these expenditures have already been taken care of in the model baseline this amount is subtracted from total NDP expenditures. With respect to investment support we relied on a government document that summarises the experience of NDP I in Hungary (GVOP 2006). According to this on average 68 percent of the support generates investment.

[^22]: ${ }^{26}$ On the basis of Schalk and Varga (2004) compiled by Onno Hoffmeister.

[^23]: ${ }^{27}$ On the basis of Schalk and Varga (2004) compiled by Onno Hoffmeister.

[^24]: ${ }^{28}$ On the basis of Koike and Thissen (2005) compiled by Péter Járosi.
 ${ }^{29}$ See the formula of cell equilibrium!DB18
 ${ }^{30}$ See the formulas of cells equilibrium!D166 and D167
 ${ }^{31}$ F.O.B. $=$,,free on board", See the formula of cell equilibrium!DB13
 ${ }^{32}$ See the formulas of cells equilibrium!DB270 and DB271

[^25]: ${ }^{33}$ See the formula of cell equilibrium!D207
 ${ }^{34}$ See the formula of cell equilibrium!DB168
 ${ }^{35}$ See the formula of cell equilibrium!DB68

[^26]: ${ }^{36}$ Equation (15) automatically follows from equations (9), (10) and (11).
 ${ }^{37}$ This equation is executed by the „longrun" subroutine.

[^27]: ${ }^{38}$ Compiled by Onno Hoffmeister

[^28]: ${ }^{39}$ Written by János Monigl and Zoltán Újhelyi

[^29]: 40 * Yearbook of Hungarian Central Statistical Office (KSH) 2003, Section 26. Transport

[^30]: ${ }^{43}$ Written by János Monigl and Zoltán Újhelyi

[^31]: ${ }^{44}$ Written by János Monigl and Zoltán Újhelyi

[^32]: ${ }^{45}$ At the HU time cost 33% of the NL level had been considered

