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1. Introduction 

The complexity of innovation necessitates firms to source significant parts of knowledge 

externally. As a result, innovation has become a collective process involving different actors 

like competing and related firms, supporting business services, private or public research 

organizations (Lundvall 2010). External knowledge is obtained via several channels, 

including (among others) formal collaborations, labor markets, technology licensing, or pure 

knowledge spillovers (Amin, Cohendet 2004). The geographic dimension of interactions in 

innovation has received a particular attention in the literature, the key role of spatial proximity 

being underlined in several studies (Varga, Horváth 2013). Geographical proximity is 

important in innovation for several reasons. Close location of actors is beneficial for 

establishing and maintaining social connections (Agrawal, Kapur, McHale 2008) which can 

facilitate quick and efficient flows of both tacit and codified knowledge. These connections 

are also advantageous for the development of trust and the establishment of common codes of 

communication, both essential for collaborative innovation (Koschatzky 2000). Additionally, 

some of the main facilitators of knowledge transfers such as spin-off firm formation (Klepper 

2007) or labor mobility (Breschi, Lissoni 2009) also tend to operate within small geographical 

areas.  

 

Despite the focal role of geography, some channels of innovation-related knowledge flows do 

not necessarily require the spatial proximity of actors. Collaborative research is one of those 

knowledge transfer mechanisms that operate even over large distances without requiring 

frequent personal interactions. The synergy between different types of proximities in 

knowledge transfers (Boschma 2005) and the fact that non-spatial forms of proximities (such 

as cognitive, social or institutional proximities) may efficiently compensate for geographical 

distance help understand why research collaboration is possible even over long distances. 

Cognitive proximity of scientists working in the same field ensures common understanding of 

the codes of scientific communication (Meder 2008) while social and relational proximities 

among researchers help build and maintain the necessary level of trust even without frequent 

interactions (Autant-Bernard, Billand, Massard 2007, Basile, Capello, Caragliu, 2012).  

 

While there is ample evidence that research-related interactions among closely located actors 

increase innovation, contrary to expectations, the literature has not provided unequivocal 

evidence for the supposed positive impact of non-spatially mediated interregional research 

collaborations on innovation. Though Hoekman, Frenken and van Oort (2008) find a positive 

and significant relationship between research activity of scientific collaboration partners 

(measured by co-authorship) and patenting at the regional level for two technologies 

(biotechnology and semiconductors) comparable evidence is not reported in other papers. 

Maggioni, Nosvelli and Uberti (2007) study research networks supported by the Framework 

Programs (FP) which are the European Union’s major research funding instruments. At the 

NUTS 2 regional level they found no relationship between patenting and the number of 

collaborative projects funded by the Fifth Framework Program (FP5). In Varga, Pontikakis 

and Chorafakis (2014) there is also no direct effect of FP5 funded research collaboration on 

regional patenting. Sebestyén and Varga (2013a) dig deeper into the issue and found evidence 

that non-spatial interregional learning in patenting in Europe is mediated by co-patenting 

linkages and not by Fifth Framework Program participations. Extending the panel of 

European NUTS 2 regions including data on FP5, FP6 and FP7 programs Hazir and Autant-

Bernard (2013) reinforce what is already reported in the papers surveyed before: interregional 
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R&D knowledge flows mediated by EU Framework Program participation are not related to 

patenting at the regional level
1
.  

 

Thus, while a positive association is observed between regional patenting and learning 

mediated by interregional co-publication networks, this relationship disappears for learning 

mediated by research collaborations funded by European Framework Programs. The 

difference in the results might arise from certain features of FP networks that have not been 

considered explicitly in the previous analyses. One of these specific features is the observed 

strong spatial regime effect of Framework Program participation in the production of new 

knowledge. The literature already shows very interesting regional patterns in this respect for 

different stages of innovation. With respect to Pasteur-type (pre-competitive) research it is 

found that EU Framework Program participation increases future publication activities but 

this positive impact is more prevalent for regions located in the periphery of Europe. 

According to Hoekman, Scherngell, Frenken and van Oort (2012) FP funding appears to be 

more efficient in promoting co-publications between previously poorly connected regions 

than strengthening already established co-publication ties. On the basis of this result the 

authors conclude that Framework Programs are successful in promoting co-publication 

activities of scientists located in the periphery of the European Union while the effect in the 

core is nonexistent or even negative.  

 

A related finding in Sebestyén and Varga (2013c) is the geographically differentiated 

Framework Program effect on future publications. Their analysis shows that knowledge flows 

from FP5 partner regions increase the number of publications associated with any level of 

R&D expenditures in the region but this positive impact on the productivity of research is 

higher in peripherally located (Objective 1) regions than in the rest of the EU. This result has 

implications for Edison-type (competitive) research as well. Varga, Pontikakis and Chorafakis 

(2014) find evidence for a positive relationship between research productivity in publication 

and the inflow of R&D in subsequent time periods. Together with the spatial regime effect in 

R&D productivity and publication found in Sebestyén and Varga (2013c), this result suggests 

that participation in collaborative research funded by EU Framework Programs has a stronger 

influence on peripheral regions’ future R&D, which (ceteris paribus) suggests a more 

pronounced indirect FP impact on patenting in lagging areas of Europe. Maggioni, Uberti and 

Nosvelli (2014) also show that CEE countries behave differently from other European regions 

in the production of new knowledge. While in CEE regions geographical spillovers play a 

limited role, FP6 contacts provide a one-way long-distance information channel for them. 

 

Wouldn’t it be the case that the generally missing evidence on a direct impact of FP 

participation mediated knowledge transfer on patenting masks important and regular spatial 

differences in Europe? Influenced by earlier findings in the literature, we assume in this paper 

                                                           
1
 An increasing network literature has emerged in the last decade in Europe analysing FP project participation. 

The line of this literature referred to in the main text studies the FP participation – regional innovation nexus. A 

related literature focuses on the formation and characteristics of networks. Maggioni and Uberti (2007) analyze 

the determinants of link formation in FP5 networks in the large EU countries under a gravity model approach. 

They find evidence for a limited role of geographical distance in forming these links compared to other types of 

knowledge linkages. Scherngell and Barber (2009) also investigate the determinants of interregional network tie 

formation on a wider sample of EU regions under FP5. They show that geographical factors are important, but 

the effects of technological proximity are stronger. Protogerou et al. (2011) analyze inter-organizational ties in 

FPs between 1995 and 2006 focusing on three ICT areas. Using network analytic techniques they show that 

these networks are highly connected, and some large-sized firms and prestigious universities constitute the core 

of the network. Scherngell and Barber (2011), using data on FP partnerships and an extended set of EU regions, 

show that technological proximity is the most important factor in both industrial and university collaboration 

while the role of geography is important for industrial but less so for public research cooperation. Autant-

Bernard et al. (2013) provide a literature review of FP collaborations from a policy perspective. 
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that the direct impact of knowledge transfers between FP network partners on regional 

patenting follows different trends in core and peripheral regions in Europe. As there are no 

antecedents in the literature on the nature of these trends, we formulate two alternative 

hypotheses. According to the first one we assume that lagging areas, resulting from their low 

levels of absorptive capacities, are not yet equipped to utilize learning from FP research 

networks (Radosevic and Yoruk 2013) thus their patenting activity will not be affected by 

collaborations funded by Framework Programs contrary to core regions where strong 

innovation effects are expected. The alternative hypothesis (in the spirit of Hoekman, 

Scherngell, Frenken and van Oort 2012) states that since FP subsidies are only substitutes for 

other research funds in core EU regions they do not influence patenting significantly there, 

whereas in peripheral regions FP research support acts as a complementary resource and as 

such it becomes an important factor in innovation.   

 

Thus we assume that the overall missing impact of EU Framework Program participation on 

regional patenting is related to a spatial regime effect. To this aim we separate EU regions 

into two sub-samples in the analysis: peripheral Objective 1 regions in Central and Eastern 

European (CEE) countries and regions in “old member states” together with non-Objective 1 

regions of CEE countries. We then econometrically test the relationship between knowledge 

learned from FP participations and regional patenting in the two sub-samples separately. Our 

measure of knowledge accessed from research networks is the Ego Network Quality index 

(ENQ - Sebestyén and Varga 2013a, 2013b). This index has been developed to provide a 

summary measure of learning potential from a particular position in the network. With this 

index the aim is to overcome a frequent shortcoming of many previous studies in the 

geography of innovation field that focus exclusively on the effect of partners’ knowledge 

while important structural features of knowledge networks are not taken into account. 

Additionally, with the application of the ENQ index it is possible to explicitly account for 

dynamic changes in extra-regional knowledge networks contrary to the usual approach, which 

operates with fixed collaboration matrices (Hazir and Autant-Bernard 2013). To control for 

extra-regional knowledge flows mediated by geographical proximity, a systematic panel 

spatial econometric methodology is applied. Our data cover three subsequent Framework 

Programs: FP 5, FP 6 and FP 7 spanning over the time period of 1998-2009. Only a limited 

number of research fields can consistently be identified during the subsequent periods of EU 

Framework Programs. In this paper we selected information science and technology (IST) for 

study.  

 

The subsequent section of the paper presents the empirical model and the methodologies 

applied in measuring localized and network mediated knowledge flows. Section 3 introduces 

the data followed by an exploratory analysis of the main variables in this study. In Section 4 

we present our empirical results. Summary concludes the paper.   

 

2. Empirical research methodology 

 

2.1 The empirical model 
Our empirical framework is built on the knowledge production function (KPF) introduced in 

Romer (1990) and then further developed by Jones (1995): 

 ���/�� = ��	��� (1) 

where ���/�� is the change in technological knowledge over time, �	� refers to human 

capital in research, �� is the total stock of already existing scientific and technological 

knowledge (knowledge codified in publications, patents etc.) and 
 stands for the spatial unit. 

Therefore, technological change is associated with contemporary R&D efforts and previously 
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accumulated knowledge. The same number of researchers can have a varying impact on 

technological change depending on the stock of already existing knowledge.  

In order to empirically test our hypotheses on the role of external knowledge (mediated by FP 

research networks) in patenting we apply the following econometric specification. Using 

subscripts i to denote individual regions, the empirical counterpart of the Romerian KPF is 

specified as: 

 log PAT� = a� + a� logRD� + a� log PAT_STOCK� +	Z� 	+ 	ε� (2) 

where !�"� stands for new technological knowledge measured by patent applications, #$� is 

expenditure on research and development and !�"_%"&'(� proxies technological knowledge 

accumulated over time in region 
. In accordance with usual interpretations, )� reflects the 

influence of localized knowledge flows from R&D carried out by firms and public research 

institutions on regional patenting, while )� estimates the relation between patenting and 

accumulated knowledge. Besides regional controls, *� stands for variables measuring the two 

extra-regional knowledge sources: knowledge accessed via the participation of FP networks 

on the one hand and geographically proximate knowledge sources on the other. The following 

two sub-sections explain our measures of the two extra-regional knowledge sources one after 

another.  

2.2 Measuring extra-regional knowledge accessed via research networks: The Ego Network 

Quality (ENQ) index 
The theory of innovation emphasizes the role of interactions among different actors in 

innovation. These interactions follow a system and the characteristics of the system determine 

the efficiency of new knowledge production to a large extent (Lundvall 2010, Nelson 1993). 

An extensive survey-based empirical literature evidences that innovation is indeed a collective 

process where the knowledge and expertise of partners and the intensity of collaborations 

among them determine the production of new, economically useful knowledge (e.g., Diez 

2002, Fischer and Varga 2002). Representing actors as nodes and their connections as ties, 

interactions of collaborating agents can be mapped as a network. On the basis of this 

representation the application of network analysis extends the frontiers of the study of 

knowledge interactions well beyond the possibilities of traditional innovation surveys. 

In this paper we employ the previously developed Ego Network Quality (ENQ) index, which 

tries to capture the quality or value of knowledge, which can be accessed by a given region 

(represented as a node) in the network of knowledge flows. Behind the concept of ENQ there 

are three intuitions directly influenced by the theory of innovation. The first intuition is that 

the level of knowledge in an agent’s network is in a positive relationship with the agent’s 

productivity in knowledge creation. The second intuition is that the structure of connections in 

the agent’s network can serve as an additional source of value (see e.g. Coleman, 1986; Burt, 

1992). Following the third intuition we assume that partners in the ego network not only 

increase the amount of knowledge accessible, but also contribute to its diversity through 

building connections to different further groups not linked directly to the ego network.  

According to these intuitions we structure ENQ around basically two dimensions, which are 

then augmented with a related third aspect. The two dimensions are: Knowledge Potential and 

Local Structure. Knowledge Potential (KP) measures knowledge accumulated in the direct 

neighbourhood and it is related to the number of partners and the knowledge of individual 

partners. Local Structure (LS) is associated with the structure of links among partners. The 

third aspect is called Global Embeddedness (GE) as it intends to capture the quality of distant 

parts of the network (beyond immediate partners). However, this aspect is implemented by 

applying the concepts of KP and LS for consecutive neighbourhoods of indirect partners in 
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the network.
2
 Here we give a brief summary of the ENQ index with the most important 

aspects. The reader is directed to Sebestyén and Varga (2013a, 2013b) for more detailed 

discussions. 

The notation in the proceeding formulation is as follows. We represent the network under 

question by the adjacency matrix + = [)�-], where the general element )�- describes the 

connection between nodes 
 and /. The adjacency matrix defines the matrix of geodesic 

distances (lengths of shortest paths) between all pairs of nodes, which is denoted by 0 = [1�-]. 
In order to account for knowledge levels, we use 2 = [3�] as the vector of knowledge at each 

specific node of the network. 

Given the conceptual model presented above, we formalize ENQ as follows: 

 456� = ∑ 89:%9�;<�9=� (!9� = :%��(!�� + >4� (3) 

In this formula superscript 
 refers to the node for which ENQ is calculated and subscript � 

stands for distances measured in the network (geodesic distance). ? is the size of the network, 

89 is a weighting factor used for discounting values at different � distances from node 
,3 
whereas (!9�  and :%9�  are the respective Knowledge Potential and Local Structure values 

evaluated for the neighbourhood at distance � from node 
. The proposed formula for ENQ is 

a distance-weighted sum of Local Structure-weighted Knowledge Potentials evaluated for 

neighbourhoods at different distances in the network. The second equation in the above 

formula shows (using 8� = 1 by definition) how the ENQ index can be divided into the three 

dimensions mentioned above: the Knowledge Potential and the Local Structure in the direct 

neighbourhood and Global Embeddedness which sums these aspects beyond the direct 

neighbourhood. In what follows, the two basic concepts, Knowledge Potential and Local 

Structure are introduced in more detail. 

Knowledge Potential 

The concept of KP relates to the amount of knowledge an agent’s partners possess. Using the 

notation presented before, the concept of KP can be formulated in the following way:  

 (!9� = ∑ 3--:BCD=9  (4) 

The Knowledge Potential, as perceived by node 
, can thus be calculated for the 

neighbourhoods at different � distances from node 
, and for all these distances it is the sum 

of knowledge possessed by nodes at these distances.  

Local Structure 

Following the theory of innovation we assume that the potentially accessible knowledge from 

immediate network partners depends not only on the partners’ accumulated knowledge but 

also on new knowledge that potentially arises from mutual learning of the partners. The 

concept of Local Structure refers to the structure of connections in different neighbourhoods 

of a node. How one defines the ‘good’ structure, though, remains an open question. There is a 

concurrent debate in the literature of social capital and network position whether cohesive, 

tightly linked neighbourhoods provide a better position (Coleman, 1986) or structural holes, 

which puts weight on gatekeepers connecting different groups in the network (Burt, 1992). 

However, the formula for ENQ in (3) is specified in a way that LS can be filled with different 

                                                           
2
 By ‘neighbourhood at distance �’ we mean the nodes exactly at distance � from a specific node. 

3
 In this paper we apply exponential weighting, where 8E�F = G�<9. Some analysis with respect to different 

formulations can be found in Sebestyén and Varga (2013b). 
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concepts. In this paper we use the cohesion approach, i.e. we attach higher weights to 

neighbourhoods in which more ties are present.
4
  

As a consequence, Local Structure (LS) is associated with the number and strength of ties 

among partners. It is the sum of the edge weights present in a given neighbourhood, 

normalized by the size of this neighbourhood: 

 :%9� = �
HIC

J∑ ∑ )-KK:BCL=9-:BCD=9<� + ∑ ∑ MDLL:NCLOID:NCDOI
� P (5) 

where 59�  is the number of nodes laying exactly at distance � from node 
. The expression in 

the parenthesis is made up of two parts. The first term counts the (weighted) ties between 

nodes at distance � − 1 and �.
5
 This reflects the intensity at which two adjacent 

neighbourhoods are linked together. The second term counts the (weighted) number of ties 

among nodes at distance �.
6
 As a result, Local Structure following the cohesion approach 

captures the intensity with which the (possibly indirect) neighbours at distance � are linked 

together and linked to other neighbourhoods. 

2.3 Modeling extra-regional localized knowledge flows: panel spatial econometric 

methodology 
Increasing availability of spatial data collected over longer periods of time created the demand 

for econometric models accounting for spatial dependence in panel data. Methodological 

developments of models in this domain (Elhorst 2003, Anselin, Le Gallo, Jayet 2008, LeSage 

and Pace 2009) and the growing number of their applications in empirical research (Autant-

Bernard 2012) are one of the most significant recent changes in spatial analysis.  

 

In the subsequent econometric analyses we consider the following specification issues: 

identification of the network effect, identification of the effect of localized knowledge transfer 

and identification of the panel effects. Equations (6) to (11) provide the actual spatial panel 

representations of equation (2) used for estimation. In equations (6) to (8) ENQ enters the 

right hand side as a stand-alone variable. In these cases we measure the direct influence of 

interregional knowledge flows mediated by FP networks on patenting in a given region. On 

the other hand equations (9) to (11) represent an alternative specification when ENQ interacts 

with R&D. In this type of models the influence of network knowledge on patenting works 

through improved productivity of research. With regards to the impact of localized knowledge 

flows on regional patenting, three types of spatial models will be tested against each other: the 

spatial lag, the spatial error and the spatial Durbin models. In spatial lag models (equations 6 

and 9) spatial dependence is modeled through the spatially lagged dependent variable. In 

spatial error models (equations 7 and 10) dependence is modeled in the error term. 

Alternatively, with the spatial Durbin model (equations 8 and 11) spatial dependence is 

modeled through both the dependent as well as the independent variables.  

 

log	E!�"�RF = � ∑ 8�S logE!�"FSRT
S=� +	U� +	U�VWXE#$�R<�F + U�VWXE!�"%"&'(�R<�F +

																												UYVWXE456�R<�F + 	UZVWXE�"4?!�R<�F +	[� +	\R +	]�R                         (6) 

 

log	E!�"�RF = 	U� +	U�VWXE#$�R<�F + U�VWXE!�"%"&'(�R<�F + UYVWXE456�R<�F +
																												UZVWXE�"4?!�R<�F +		[� +	\R +	^�R	,			^�R = 	` ∑ 	8�S^SR	 + ]�R	T

S=�      (7) 

                                                           
4
 See Sebestyén and Varga (2013b) for an analysis with alternative specifications building on the structural holes 

concept. 
5
 Distances are always measured from node 
. 

6
 Division by two is required because matrix + is symmetric, and thus we can avoid duplications in the counting.  
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log	E!�"�RF = � ∑ 8�S logE!�"FSRT
S=� +	U� +	U�VWXE#$�R<�F + U�VWXE!�"%"&'(�R<�F +

																											UYVWXE456�R<�F 	+ 	UZVWXE�"4?!�R<�F +	a� ∑ 8�SVWXb#$SR<�cT
S=� +

																											a� ∑ 8�SVWXb!�"%"&'(SR<�cT
S=� + aY ∑ 8�SVWXb456SR<�cT

S=� +
																											aZ ∑ 8�SVWXb�"4?!SR<�cT

S=� +	[� +	\R +	]�R        (8) 

 

 

log	E!�"�RF = 			� ∑ 8�SVWX	E!�"SRFT
S=� +	U� +	U�VWXE456�R<�FVWXE#$�R<�F +

																														U�VWXE!�"%"&'(�R<�F +	UYVWXE�"4?!�R<�F +	[� +	\R +	]�R      (9) 

 

log	E!�"�RF = 		U� +	U�VWXE456�R<�FVWXE#$�R<�F + U�VWXE!�"%"&'(�R<�F +
																														UZVWXE�"4?!�R<�F +	[� +	 	\R + ^�R	,			^�R = 	`∑ 8�S	^SR	 + ]�R	T

S=�     (10) 

 

log	E!�"�RF = 			� ∑ 8�SVWX	E!�"SRFT
S=� +	U� +	U�VWXE456�R<�FVWXE#$�R<�F +

																															U�VWXE!�"%"&'(�R<�F +	 	UYVWXE�"4?!�R<�F +
																															a� ∑ 8�SVWXb456SR<�c	VWXb#$SR<�cT

S=� +
																															a� ∑ 8�SVWXb!�"%"&'(SR<�cT

S=� +		aY ∑ 8�SVWXb�"4?!SR<�cT
S=� +

																															[� +	\R +	]�R                       (11) 

 

 

There are some variables in equations (6) to (11) not yet introduced before. �"4?! is 

employment in high technology industries. Its estimated parameter is considered as a proxy 

for the impact of the localized flows of non-research related industrial knowledge on 

patenting. 	[� and \R represent spatial and time-period (fixed or random) effects.  

 

Selection among the spatial error, lag and Durbin models is guided by testing the so-called 

common factor hypothesis (Anselin 1988):  

 

H0: a = 0	and H0: a + 	�U = 	0 

 

where a, just as α, is a Kx1 vector of parameters. The first hypothesis examines whether the 

spatial Durbin model can be simplified to the spatial lag model, and the second hypothesis 

whether it can be simplified to the spatial error model (Burridge, 1981). We applied the Wald 

test (Elhorst 2012) to empirically test the common factor hypothesis.  

 

Regarding panel effect identification, we run LR tests on the joint significance of spatial fixed 

effects and time-period fixed effect, subsequently (Elhorst 2012). Hausman's specification test 

is used to test the random effects model against the fixed effects model (Lee and Yu 2010).  

 

3. Data description and an exploratory analysis 

The empirical analysis in this paper is based on a sample of 262 European NUTS2 regions. 

We use a panel database, covering the period between 2000 and 2009. As our main aim is to 

estimate the knowledge flow effects over a longer period of time, we need to join data from 

FP5, FP6 and FP7 running over this time. In order to have a consistent dataset, we need to 

restrict our analysis to those thematic areas which can be identified in all three FPs. Three 

such areas can be identified: “Quality of Life”, mainly covering life sciences, biological and 

medical research, “Information Society and Technology”, mainly covering information and 

communication technology, and “Euratom”, focusing on nuclear research (see also Hoekman 
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et al., 2012). From these three areas we focus on the Information Society and technology 

(IST) thematic area in this paper. The specific thematic areas are: User Friendly Information 

Society in FP5, Information Society Technologies in FP6 and Information and 

Communication Technologies in FP7 – the same grouping is used by e.g. Hoekman et al., 

2012. The dependent variable is patenting activity in the ICT sector at the regional level as 

proxied by patent applications to the EPO (!�"�R).7 Although using patents as a proxy for 

technological innovation is far from a perfect solution, there are several reasons why it still 

remains one of the most widely used and accepted measures (see e.g. Griliches 1990, for a 

comprehensive study on the issue, or Acs, Anselin and Varga 2002, for an analysis on the 

links between patent and other innovation counts at the level of regions). 

 

Following Romer (1990), the importance of knowledge stocks (or a 'standing on the shoulders 

of giants' effect) for knowledge production has been verified empirically (Furman, Porter and 

Stern, 2002; Zucker et al. 2007). In order to capture this effect we use proxies of regional 

knowledge stocks by calculating patent stocks for each region (!�"%"&'(�R) according to 

the perpetual inventory method for the 1995–2009 period (see the details in Varga, Pontikakis 

and Chorafakis 2014). 

 

Knowledge flows between regions are captured by FP cooperation networks in the 

information technology and society thematic areas (as discussed previously) over the period 

of 1998-2009. There are good reasons to expect that participation in the FP can be an 

appropriate proxy of the relational structure of interregional knowledge diffusion across 

Europe. The FPs were designed to support ‘pre-competitive’, collaborative research with no 

national bias as to the types of technologies promoted and the distribution of funds. The 

precompetitive character of supported research ensured that Community funding did not clash 

with the competition principles of the Common Market and did not function as a form of 

industrial subsidy; the collaborative character of research and the cost-sharing provisions were 

seen to guarantee the diffusion of technologies and the involvement of various types of actors 

from the whole technological knowledge creation spectrum, such as large and small firms, 

universities and public research institutes. One potential drawback of the FP as a data source 

is the fact that it is artificial; i.e. collaborating teams will not always coincide with naturally 

emerging networks of researchers. (Varga, Pontikakis and Chorafakis, 2014) 

 

The regional information (address) of participants in FP projects together with the information 

of the date of cooperation (duration of FP programs) allows us to construct a simple network 

assigning to each FP project the regions where the partners are resident. Then, this two-mode 

network is converted into a one-mode network where the nodes are regions and the links 

between the regions refer to the cooperation between the regions. This conversion is done on 

the basis of the assumption that all partners listed for a given FP project are linked to each 

other. For example, if three actors, A, B and C cooperated in one project, and actors A and B 

belong to region 1 while actor C belongs to region 2, then we conclude that there is a link 

between regions 1 and 2. Furthermore, the links in this interregional network is weighted, the 

link weights corresponding to the number of projects in which organizations from the two 

regions are involved. This method is then iterated for each FP project and each year in the 

sample to obtain the annual adjacency matrices describing the network structure of knowledge 

flows. These matrices are then used to calculate the ENQ measures in this study. 

Table 1. Variable description 

Variable Name Description Source 

                                                           
7
 The database uses a fractional count for patents. If inventors from different regions invent a patent it is assigned 

to each region on a fractional basis.  
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!�"�R  Number of patent applications 

from the ICT sector to the 

European Patents office (EPO) 

by region of inventor (fractional 

counts) 

Eurostat database 

#$�R  Gross regional expenditures on 

R&D, in millions of Purchasing 

Power Standard (PPS) Euros, 

1995 prices 

Eurostat database 

#4>_ef5$�R  Regional FP funding under the 

information technology and 

society thematic areas (User 

Friendly Information Society in 

FP5, Information Society 

Technologies in FP6 and 

Information and Communication 

Technologies in FP7), in millions 

of Purchasing Power Standard 

(PPS) Euros, 1995 prices 

Authors’ elaboration 

on FP5-6-7 

administrative 

database, DG RTD, 

Dir A 

!�"%"&'(�R Regional patent stock in the ICT 

sector 

Authors’ elaboration 

on Eurostat database 

456_$45%�R,  
 

Ego Network Quality – a 

comprehensive measure of the 

knowledge accessible from a 

network position. ENQ values 

are calculated for the 

interregional FP collaboration 

network in the information 

technology and society thematic 

areas (User Friendly Information 

Society in FP5, Information 

Society Technologies in FP6 and 

Information and Communication 

Technologies in FP7); DENS 

refers to the cohesion approach 

followed in the calculation of LS; 

KP is measured by regional FP 

funding 

Authors’ elaboration 

on FP5-6-7 

administrative 

database, DG RTD, 

Dir A 

�"4?!�R  Regional employment in the high 

tech sectors according to the 

Eurostat classification (high-tech 

manufacturing and high-tech 

knowledge-intensive services) 

Eurostat database 

 

 

The aggregation method we use also has its shortcomings. We assume that there is an 

‘individual’ link between all project members and then interregional links are established 

according to the number of projects in which two participants from two regions cooperate. 

This method hides the possibly more refined structure of interrelations among partners and 

hence regions. Unfortunately, though, there is no information on the specific collaboration 

structure (e.g. internal groups and hierarchies) of the projects. With less project members the 
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complete connectedness can be a reasonable proxy but at larger projects with many 

participants this method may overestimate the true intensity of collaboration among regions. 

 

Although there is example in the literature to use different internal network structures for the 

projects (see e.g. Maggioni et al., 2012), we would argue that in these projects the possibility 

is given for all participants to communicate through project events and meetings. As a result, 

it is rather the strength of ties is important than their pure existence, however, there is no 

available information for this in our dataset. 

 

Our data covers three subsequent Framework Programs: FP 5, FP 6 and FP 7 spanning over 

the time period of 2000-2009. We carry out the analysis with two European sub-samples: 

lagging EU regions, that is Central-Eastern European (CEE) Objective 1 regions (CEE Obj1 

regions - 51 regions) and regions in old member states together with non-Objective 1 CEE 

regions (Rest of EU regions - 211 regions). Variable description is provided in Table 1, while 

descriptive statistics of the main variables are presented in Table 2. 

 

Table 2. Variable descriptive statistics  

Total sample 

  PAT RD REG_FUND PATSTOCK ENQ HTEMP 

N 2,620 2,620 2,620 2,620 2,620 2,620 

Mean 56.07 674.99 2.66 340.05 6,655.40 35.01 

Std.dev. 137.21 1,166.34 5.56 856.23 7,055.57 41.52 

Min 0.05 1.06 0.00 0.14 0.18 0.86 

Max 1,926.59 13,269.56 70.07 7,582.23 25,653.63 474.77 

  CEE OBJ1 regions 

  PAT RD REG_FUND PATSTOCK ENQ HTEMP 

N 510 510 510 510 510 510 

Mean 2.14 123.91 0.62 9.03 2,945.60 23.12 

Std.dev. 2.71 169.22 1.13 8.58 4,173.80 17.23 

Min 0.06 4.16 0.00 0.70 0.18 5.47 

Max 17.95 1,245.06 5.72 61.81 23,087.01 145.00 

  Rest of EU regions 

  PAT RD REG_FUND PATSTOCK ENQ HTEMP 

N 2,110 2,110 2,110 2,110 2,110 2,110 

Mean 69.11 808.19 3.15 420.06 7,552.08 37.88 

Std.dev. 150.01 1,261.39 6.07 936.71 7,312.47 45.02 

Min 0.05 1.06 0.00 0.14 0.18 0.86 

Max 1,926.59 13,269.56 70.07 7,582.23 25,653.63 474.77 

 

In what follows, some exploratory analysis is provided with respect to our basic variables. 

Figure 1 shows the evolution of patenting activity in CEE objective 1 regions and the rest of 

EU regions in the sample. First, it is evident form the figure that there is a magnitude 

difference between the two categories of regions in favor of rest of EU regions. On the other 

hand, we observe an increasing trend for CEE objective 1 regions while a decreasing one for 

the other regions, marking a catch-up process in the former. This is reinforced by the relative 

patenting activity (see the right axes), however the relative patenting intensity of CEE 

objective one regions is still only at 5-6% of that of the rest of EU regions. 
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Figure 1: Average and relative patenting activity in CEE objective 1 and rest of EU regions

 

Figure 2: Average FP funding in CEE objective 1 and rest of EU regions 

Figure 2 shows average regional funding for CEE objective 1 and rest of EU regions in the 

sample as well as the relative position of CEE objective 1 regions compared to the rest of 

regions in the EU. It is also apparent that CEE objective 1 regions acquire far less funding 

through FP projects than other EU regions. However, they show an increasing trend in this 

respect resulting in a catch-up process through the period between 2000 and 2006. In 2006 

these lagging regions acquired on average 25% of the FP funding realized in other regions. 

From 2006 to 2009, however, the relative position of the CEE objective 1 regions is 

worsening and rest of the EU regions acquire still almost 5 times more funding at the end of 

the observation period. The vertical bars mark the turning points between different FPs. 

During FP5 (although the period in the figure is truncated for this FP), we observe an 

increasing trend both for CEE objective 1 regions and rest of the EU regions. Through FP6, 
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though, this trend breaks for the rest of EU regions and remains for CEE objective one regions 

while in FP7 funding stagnates (and even decreases slightly for CEE regions).  

Turning to the ENQ index, Figure 3 shows how the average ENQ indices evolved over our 

sample period. Rest of EU regions step ahead of their CEE objective 1 partners with respect to 

their ENQ index over the whole period, while the difference in absolute terms increase in the 

middle of the period. The relative differences, although remain quite stable up to 2008 

(slightly under 35%) there is a marked increase between 2004 and 2009 up to almost 50%. 

This shows that the relative position of CEE objective 1 regions in interregional knowledge 

networks improved significantly in the second half of the sample period, but still remains at 

half of the rest of EU regions. In addition, it is interesting to see the marked differences across 

different FPs. A heavily increasing trend in FP5 breaks under FP6 and there is a sharp drop 

under FP7 for both samples. However, this latter two periods lead to the catch up for CEE 

objective 1 regions as the drop there is less marked. 

  

Figure 3: Average ENQ of CEE objective 1 and rest of EU regions 

With respect the two subindices (Knowledge Potential and Local Structure, capturing the 

properties of the direct neighborhood of the regions in the sample), we can see that CEE 

objective 1 regions could increase their position significantly according to their Local 

Structure, from around 35% to over 50% at the end of the sample. In other words, these 

regions tend to reach more favorable positions in interregional knowledge networks with 

respect to the connectedness of their neighborhood: they are better connected in the sense that 

they are surrounded by more intensive collaboration structures, getting more similar in this 

respect to other EU regions in our sample. In the case of Knowledge Potential, we observe a 

maintained difference between CEE objective 1 and rest of EU regions over the sample 

period. This shows that the direct partners of CEE objective 1 regions in FP collaborations 

tend to possess less knowledge (proxied by FP funding). This can be explained by the typical 

network formation principle that nodes with some characteristics (in our case less knowledge) 

tend to connect to nodes with similar characteristics. On the other hand, we observe a relative 

increase in the Knowledge Potential scores of CEE regions, reaching 40-45% at the end of the 

sample. Overall, we can conclude that the relative catch up process of CEE regions in terms 

of their ENQ index can be traced back to the relative improvement in their Knowledge 
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Potential and Local Connectivity scores. In other words, their better position measured at the 

end of the sample relative to their initial positions stems from both more knowledge at their 

direct partners (which can be a result of either higher knowledge at already existing partners 

or forming connections to more knowledgeable ones) and a more intensive collaboration 

structure among the partners. 

 

Figure 4: The spatial distribution of ENQ values and patent counts in CEE Obj 1 regions  

Figure 4 shows the spatial distribution of regional patent counts and ENQ values for CEE Obj 

1 regions calculated for 2008. Note that non-Obj 1 CEE regions (mostly the capital regions) 

are not depicted in the Figure. There are marked differences between the countries and also 

the regions. Poland, the Czech Republic and the Baltic countries show above average regional 

ENQ values and they are also over average in patenting. Overall, there seems to be a positive 

correlation between ENQ and patenting in these regions. 

 

4. Empirical analysis 

Previous studies reported that the impact of EU Framework Programs’ research subsidies on 

scientific publication follow different patterns in peripheral regions of the European Union 

compared to the rest of the EU. We assume in this paper that the generally missing impact of 

EU Framework Program participation on regional patenting is also related to a spatial regime 

effect. To this aim we separated EU regions into two sub-samples: CEE Objective 1 regions 

and rest of EU regions, the latter containing non-CEE regions (including objective 1 regions 

there) and non-Objective 1 regions in CEE countries (practically the capital regions). As 

shown in the preceding section objective 1 regions in the recently joined CEE countries 

indeed follow different patterns in patenting and also in Framework Program participation.  

 

Tables 3 and 4 present the results of the regression analysis for regions in the two sub-samples 

of the EU for the Information Science and Technology thematic area. We first study the 

regression outputs for the rest of EU  regions then the results for CEE objective 1 regions. The 

usual two-year time lag between inputs to regional knowledge production and patenting is 
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applied
8
. In Model (1) of Table 3 the two main variables of Equation (2) (R&D expenditures 

and stock of patents) appear with the expected positive sign and also with high significances. 

The fit of the regression is considerably high (adjusted R-square equals 0.89) especially 

taking into account the panel nature of the data. Models (2) to (4) document the results of our 

exploration of the role of extra-regional knowledge flows mediated by FP networks. The 

negative and significant coefficient of the ENQ variable in Model (2) is a consequence of the 

strong correlation between log(RD) and log(ENQ_DENS). An alternative specification is 

Model (3) where log(RD) interacts with log(ENQ_DENS). The negative and insignificant 

coefficient indicates that the productivity of R&D expenditures in patenting is not affected by 

FP participations. In Model (4) an alternative specification is followed: the interaction of 

Log(REG_FUND) (which is the funding received through FP projects in the region under the 

IST area) and log(ENQ_DENS), which is significant and positive. So far the results thus 

suggest that knowledge flows from FP networks positively influence the productivity of FP 

research subsidies in regional patenting. However it should be kept in mind that up to this 

point neither panel effects nor spatial dependence has been taken into consideration.  

 

In Model (5) employment in high technology (HTEMP) enters the equation as an additional 

variable with a significant and positive coefficient. This model column shows spatial statistics 

as well. It is clear that both spatial lag and spatial error dependence are present no matter 

which spatial weight matrix is used in the tests. Since the strongest effect is observed with 

those 4 neighbors that locate closest to the region the 4-nearest-neighbors weight matrix will 

be used in spatial econometric estimations.  

 

The significant LR tests (bottom part of the column of Model 5) support the extension of 

Model (5) with spatial and time period (two-way) fixed effects. On the other hand the 

significant Wald Lag and Wald Error test statistics at the bottom of Model (6) indicate that 

both the spatial lag and the spatial error model should be rejected in favor of the Spatial 

Durbin model. Thus after controlling for unmeasured regional and temporal characteristics as 

well as spatial dependence, Model (6) provides the final regression results. Though the size of 

the parameters of the R&D and patent stock variables decreased, these two parameters are still 

significant. One important change in Model (6) compared to Model (5) is the now 

insignificant parameter of the variable Log(REG_FUND)*Log(ENQ _DENS). This result is a 

strong indication that in rest of EU regions knowledge flows from FP networks do not play a 

meaningful role in regional patenting. Further essential results are the significant and positive 

parameters of the spatially lagged dependent variable and the spatially lagged R&D and high 

technology employment variables. These results together with the insignificant FP network 

effect indicate that regions in more developed regions tend to rely on localized knowledge 

inputs in patenting instead of extra-regional knowledge communicated via FP research 

networks.  

 

 

 
Table 3. Regression Results for Log (PAT) for 211 Rest of EU NUTS 2 Regions and  

for the ICT sector, 2000-2009 (N=2110) 
Model (1) 

 

Pooled 

(2) 

 

Pooled 

(3) 

 

Pooled 

(4) 

 

Pooled 

(5) 

 

Pooled 

(6) 

 

Spatial and time-

period 

fixed effects 

                                                           
8
 Though the two-year time lag does not guarantee that the problem of potential endogeneity of some right hand 

side variables is perfectly cured in the model, taking also into consideration the fact that in both final models 

spatial Durbin estimates are applied we can reasonably argue that our estimations are superior compared with 

ignoring the potential problem of endogeneity (Fingleton, Le Gallo 2010).  
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Estimation OLS OLS OLS OLS OLS ML 

Spatial Durbin  

(4-nearest neigh) 

Constant 

 

W_Log(PAT) 

 

Log(RD(-2)) 

 

LOG(RD(-2)-REG_FUND 

(-2)) 

 

LOG(ENQ_DENS(-2)) 

 

Log(RD_TOTAL 

(-2))*LOG(ENQ_DENS(-2)) 

 

LOG(REG_FUND 

(-2))*LOG(ENQ_DENS(-2)) 

 

LOG(PATSTOCK(-2) 

 

LOG(HTEMP(-2)) 

 

W_LOG(RD(-2)-REG_FUND(-2)) 

 

W_LOG(REG_FUND 

(-2))*LOG(ENQ_DENS(-2)) 

 

W_LOG(PATSTOCK(-2)) 

 

W_LOG(HTEMP(-2)) 

 

-2.329*** 

(-39.45) 

 

 

0.338*** 

(20.06) 

 

 

 

 

 

 

 

 

 

 

 

0.712*** 

(53.31) 

-2.407*** 

(-40.61) 

 

 

0.368*** 

(21.47) 

 

 

 

-0.021*** 

(-7.33) 

 

 

 

 

 

 

0.714*** 

(54.12) 

-1.394*** 

(-35.35) 

 

 

 

 

 

 

 

 

 

 

-0.001 

(-1.02) 

 

 

 

0.940*** 

(103.76) 

-2.305*** 

(-39.24) 

 

 

 

 

0.326*** 

(19.25) 

 

 

 

 

 

 

 

0.006*** 

(4.69) 

0.712*** 

(53.63) 

 

-2.188*** 

(-36.62) 

 

 

 

 

0.200*** 

(8.67) 

 

 

 

 

 

 

 

0.005*** 

(3.96) 

0.685*** 

(50.55) 

0.239*** 

(7.88) 

 

 

 

 

 

 

 

 

 

0.148*** 

(4.83) 

 

 

0.105** 

(2.05) 

 

 

 

 

 

 

 

-0.001 

(0.59) 

0.094** 

(2.40) 

0.073 

(1.08) 

0.329*** 

(3.50) 

 

-0.002 

(-0.63) 

-0.006 

(-0.09) 

0.368*** 

(3.23) 

R2-adj 

LIK 

0.89 

-2033.73 

0.89 

-2007.13 

0.87 

-2217.56 

0.89 

-2022.30 

0.89 

-1991.63 

0.96 

-967.01 

LM-Err  

Neigh 

INV2 

4-nearest neighbours 

 

LM-Lag 

Neigh 

INV2 

4-nearest neighbours 

 

Wald-Lag (4-nearest neigh) 

Wald-Err  (4-nearest neigh) 

 

LR-test joint significance spatial fixed 

effects 

 

LR-test joint significance time-period 

fixed effects 

 

Hausman random effects test 

     

23.04*** 

21.99*** 

48.71*** 

 

 

30.49*** 

30.77*** 

58.09*** 

 

 

 

 

 

1783*** 

 

 

88.9*** 

 

 

 

 

 

 

 

 

 

 

 

 

28.20*** 

33.24*** 

 

 

 

 

 

 

 

160.2*** 

Notes: Estimated t-values are in parentheses; spatial weights matrices are row-standardized: Neigh is 

neighborhood contiguity matrix; INV2 is inverse distance squared matrix, 4-nearest neighbors is a weights 

matrix where those regions are considered as neighbors that are among the four most closely located ones; W_ 

denotes spatially lagged (dependent and independent) variables calculated with the weights matrix 4-nearest 

neighbours. *** indicates significance at p < 0.01; ** indicates significance at p < 0.05; * indicates p < 0.1.  

 

Table 4 reports the regression results for CEE objective 1 regions. In Model 1 parameters of 

the two major variables are positive and significant, similar to what is observed for the rest of 

EU regions. However there are two important differences in the results of Model 1 in the 

periphery compared to the results of the same model for the rest of the EU. First, the 

estimated parameters of the R&D and patent stock variables are smaller, and second, 

regression fit is apparently lower (adjusted R-square is 0.44 in Table 4 compared to 0.89 in 

Table 3). The other important difference is the highly significant and positive ENQ parameter 

for CEE objective 1 regions in Model (2). The significant FP network impact remains 

unchanged after the introduction of the high technology employment variable in Model (3). It 

is also a meaningful difference between Model (3) in Table 4 and Model (5) in Table 3 that 

for CEE objective 1 regions the estimated parameter of the high technology employment 

variable is negative and insignificant suggesting limited roles of local industrial knowledge in 

patenting. The spatial statistics in Model (3) indicates the presence of both spatial lag and  
Table 4. Regression Results for Log (PAT) for 51 CEE OBJ1 EU  

NUTS 2 Regions and for the ICT sector, 2000-2009 (N=510) 
Model (1) 

 

Pooled 

(2) 

 

Pooled 

(3) 

 

Pooled 

(4) 

 

Pooled 

(5) 

 

Random spatial effects, 

fixed time-period 

effects 
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Estimation OLS OLS OLS OLS ML-Spatial Durbin 

(INV2) 

Constant 

 

W_Log(PAT) 

 

Log(RD-2)) 

 

LOG(ENQ_DENS(-2)) 

 

LOG(PAT_STOCK(-2) 

 

LOG(HT_EMP(-2)) 

 

W_LOG(RD_TOTAL(-2) 

 

W_LOG(ENQ_DENS(-2)) 

 

W_LOG(PAT_STOCK(-2) 

 

W_LOG(HT_EMP(-2)) 

 

WEST_BORDER 

 

-2.049*** 

(-14.89) 

 

 

0.294*** 

(8.03) 

 

 

0.611*** 

(12.43) 

-1.939*** 

(-13.81) 

 

 

0.262*** 

(6.99) 

0.026*** 

(3.21) 

0.576*** 

(11.56) 

-1.931*** 

(-9.88) 

 

 

0.265*** 

(4.53) 

0.027*** 

(3.20) 

0.576*** 

(11.46) 

-0.006 

(-0.06) 

 

 

 

 

 

 

 

 

-1.921*** 

(-9.91) 

 

 

0.267*** 

(4.61) 

0.029*** 

(3.46) 

0.528*** 

(10.10) 

-0.012 

(-0.12) 

 

 

 

 

 

 

 

 

0.277*** 

(3.07) 

 

 

-0.190** 

(-1.93) 

0.215** 

(2.47) 

0.024** 

(2.27) 

0.374*** 

(5.02) 

0.104 

(0.68) 

0.411* 

(1.79) 

0.072* 

(1.90) 

0.352 

(1.48) 

-1.260** 

(-2.57) 

 

 

R2-adj 

LIK 

0.44 

-641.74 

0.45 

-636.59 

0.45 

-636.58 

0.45 

-631.85 

0.56 

-1188.70 

LM-Err  (robust) 

Neigh 

INV2 

4-nearest neighbours 

 

LM-Lag (robust) 

Neigh 

INV2 

4-nearest neighbours 

 

Wald-Lag (INV2) 

Wald-Err  (INV2) 

 

LR-test joint significance spatial 

fixed effects 

 

LR-test joint significance time-

period fixed effects 

 

Hausman random effects test 

 

φ 

   

1.263 

7.737*** 

0.803 

 

 

1.239 

7.278*** 

0.482 

 

 

 

 

 

196.1*** 

 

 

30.8*** 

 

  

 

 

 

 

 

 

 

 

 

13.57*** 

11.69** 

 

 

 

 

 

 

 

1.573 

 

0.492*** 

(7.80) 

Notes: Estimated t-values are in parentheses; spatial weights matrices are row-standardized: Neigh is 

neighborhood contiguity matrix; INV2 is inverse distance squared matrix, 4-nearest neighbors is a weights 

matrix where those regions are considered as neighbors that are among the four most closely located ones; W_ 

denotes spatially lagged (dependent and independent) variables calculated with the weights matrix 4-nearest 

neighbours. *** indicates significance at p < 0.01; ** indicates significance at p < 0.05; * indicates p < 0.1.  

 

spatial error dependence while LR panel tests guide us to extend this model with spatial and 

time-period fixed effects.  

 

The positive and significant parameter of the west border dummy in Model (4) clearly 

suggests that there are important unmeasured differences in Central and Eastern Europe. 

Regions neighboring old member states (ceteris paribus) appear to use local resources more 

efficiently than the rest of the CEE regions. Model (5) takes individual regional and time-

period effects explicitly into account. The insignificant Hausman random effect test on the 

one hand and the significant Wald-Lag and Wald-Error tests point towards the Random 

spatial and Fixed time-period effect Spatial Durbin model. 

 

Model (5) depicts regression outputs when unmeasured regional and time-period effects as 

well as spatial dependence are controlled for. The results document markedly different 

patterns in the absorption of local and network knowledge in the two areas of the European 

Union. Contrary to the missing FP network effect in regions of the old EU member states the 

significant and positive parameter for Log(ENQ_DENS) in the final model of Table 4 

indicates that knowledge transferred from FP networks is an important element of regional 

patenting in CEE objective 1 regions. The significant effects of local R&D and patent stocks 

remain unchanged in the final model. An additional apparent difference between the results of 

the final models in Tables 4 and 3 is related to the role of localized knowledge transfers in 

regional patenting. The parameters of the spatially lagged dependent variable as well as that 
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of the high technology employment variable are negative while significant. These results 

indicate a chessboard-like structure of regional knowledge production in CEE regions. 

Regions with relatively high levels of patenting are generally surrounded by low patent 

producing regions with small high technology sectors. Considering the marginally significant 

parameters of the spatially lagged R&D and ENQ variables only a weak evidence is found for 

the influence of geographically mediated extra-regional knowledge flows on patenting in CEE 

objective 1 regions.  

 

5. Summary and conclusions 

Framework Programs are the largest research support instruments of the European Union. 

These programs finance collaboration among research units located in different parts of 

Europe and as such they mediate the flow of a significant amount of knowledge across 

distantly located European regions. Therefore knowledge transferred via FP research 

networks can potentially serve as substantial inputs to regional innovation. Contrary to 

expectations though, no evidence has been found on the supposed positive regional innovation 

impact of FP participation. On the other hand, a related research on the role of FP mediated 

knowledge transfers in regional scientific publication activity indicates important differences 

between lagging and core regions of the European Union. These findings motivated us to 

assume that the missing overall impact of EU Framework Program participation on regional 

innovation masks important differences between core and peripheral regions in Europe.   

 

Within the Romer knowledge production function framework we tested empirically if 

knowledge potentially accessed via FP network linkages has any relationship with regional 

patenting. We carried out the analysis on two sub-samples covering the years of 2000-2009: 

CEE objective 1 regions (51 regions) and regions in the rest of the EU (211 non-CEE regions 

and non-objective 1 CEE regions). The selected research area of study was information 

science and technology, as this area can be identified through three FPs (FP5, FP6 and FP7) in 

a relatively consistent manner. While studying the FP network impact on innovation we 

controlled for localized knowledge flows via a systematic panel spatial econometric 

methodology. We found that clear and marked differences exist between CEE objective 1 and 

rest of EU regions. While knowledge transferred via FP networks acts as a further important 

input to patenting in CEE objective 1 regions, this is not observed in rest of EU regions. On 

the other hand, it is clear that localized learning in patenting is extremely important for 

regions located in rest of EU regions, whereas knowledge flows from neighboring regions 

play only a marginal role in the innovation activity of CEE objective 1 regions.  

 

Thus, our results suggest that FP research subsidies act as a substitute for funding from other 

(mainly national) sources in regions of old EU member states and capital regions in CEE 

countries. On the other hand, innovation tends to rely more on external knowledge transferred 

via FP funded research networks in CEE objective 1 regions, compensating for their less 

developed local knowledge infrastructures. Our findings are important as they suggest that 

strengthening research excellence and international scientific networking in relatively lagging 

regions (such as regions in CEE countries) could be a viable option to increase regional 

innovativeness, which in combination with other policies, could form a base for a systematic 

support of regional development (McCann, Ortega-Argiléz 2014).  
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