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Abstract

In this paper we establish a methodological tool which is able to comprehensively take into account
the characteristics of local entprereneurial ecosystems and innovation systems while also reflecting
the interconnectedness of these local systems shaping the availability of local resources. In this
attempt, we draw on previous methodological developments carried out at the Regional Innovation
and Entrepreneurship Research Center. First, we use the KAPIS index which is designed to capture
position in knowledge networks. Second, we build on the REDI which describes regional
entrepreneurial ecosystems in a comprehensive way. By integrating the two tools, we are able to set
up a framework for jointly analyzing the role of local conditions and also interregional embeddedness
in shaping the entrepreneurial environment.
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1. Introduction

Recognizing that innovation is inherently a collaborative process, recent research has shed light on the
prominent role of cooperation in innovative activities (e.g. Lundvall, 2010). Through innovation,
different networks of cooperation can thus contribute to the development and growth of regions,
showing that policies targeting network formation can be effective tools in promoting regional
development. In addition to the general understanding that collaborative ties can positively contribute
to innovation and growth, results on this field specifically call attention to the importance of
interregional cooperation (e.g. Hoekman et al. 2008, Varga et al. 2014, Sebestyén and Varga 2013).
Moreover, these more distant ties of knowledge flows can significantly improve innovation
performance in those lagging regions where the local supply of resources used in innovation is scarce,
because the networks provide access to similar resources accumulated elsewhere (Varga and
Sebestyén, 2017).

Also, literature on entrepreneurship emphasize that an ecosystem of different actors, institutional
conditions can largely contribute to the entrepreneurial process and the development of a given
location (e.g. Acs et al. 2017; Stam 2015; Alvedalen and Boschma 2017). However, these local
entrepreneurial ecosystems are not isolated as well, they may interact through interregional networks,
thus the latter may significantly contribute to the functioning of the local ecosystems. Literature on
innovation ecosystems also draw attention to the fact that while conceptual descriptions are widely
available, there is a scarcity of methodological developments, which aim to measure and assess these
ecosystems in a rigorous, systematic manner (Alvedalen and Boschma 2017; Neumeyer and Santos
2018; De Hoyos-Ruperto et al. 2013; Motoyama and Watkins 2014; Roundy et al. 2018; Kurato et al.
2017).

In this paper we establish a methodological tool which is able to comprehensively take into account
the characteristics of local entprereneurial ecosystems and their interconnectedness, while it provides
an evaluation of how this connectedness contributes to the functioning of the ecosystems. In this
attempt, we draw on previous methodological developments carried out at the Regional Innovation
and Entrepreneurship Research Center. First, we use the KAPIS index which is designed to capture
position in knowledge networks. Second, we build on the REDI which describes regional
entrepreneurial ecosystems in a comprehensive way. By integrating the two tools, we are able to set
up a framework for jointly analyzing the role of local conditions and also interregional embeddedness
in shaping the entrepreneurial environment. The REDI captures the quality of local entrepreneurial
ecosystems, while it also reflects some aspects of the innovation system within a given region, through
one of its pillars. The KAPIS index then adds extra-regional innovation relationships to the REDI. It
shows how innovation networks (innovation connections, knowledge flows, collaborations) shape the
available resources for innovation and entrepreneurship. As a result, we end up with a comprehensive
measurement tool which is able to reflect the local endowments and extra-local available resources
for innovation and entrepreneurship in a relatively comprehensive way.

The paper is structured as follows. In section 2, we present the methodology behind the KAPIS index,
which describes knowledge network positions. Section 3 provides a brief introduction of the REDI
index. Section 4 presents the data used in the analysis and provides a set of preliminary results based
on our analysis and the developed framework. Conclusion closes the paper with an outlook on further
research areas.

2. The KAPIS network index

The Knowledge Access Position in Innovation Systems (KAPIS) index was developed in order to
establish a measurement tool which evaluates the position of a node in a network by taking into



account the level and quality of knowledge it can access from its direct and indirect network. This
measurement tool takes into account

e the level of knowledge available at the direct and indirect partners,

¢ the embeddedness of direct and indirect partners within the network,

e the distances within the network i.e. closer knowledge and dense interactions are valued
more.

In what follows, we provide some definitions and develop the index in detail.

2.1 Definitions

Let G(N, E, p) denote a weighted graph (network), defined by the nodes N:i,j, k € {1, ...,n}, edges
:f € {1,...,e} and the projection : E - R interpreted on the edges. We use the subindices i, j, k and
[ to denote the nodes. All information on the graph G is condensed in the adjacency matrix A = [aij]
where the general element a;; = 0 gives the weight of the connection between nodes i and ;.

In what follows, we normalize the connection intensities ajj by the sum of these intensities within the
whole network:

al-j

:ZiZjaij

Wij

(1)

The normalized connection weight Wij thus shows how intense the connection between i and j is,
relative to the total intensity of connections (flows) in the network. In case of binary connections where
a;j € {0; 1} this is practically the reciprocal of the total number of edges: w;; = 1/e for all a;; > 0.
The reason of using this normalization is twofold. First, it creates a common basis for comparing
different networks with different units of measurement in A. Second, as our method requires matrix-
inversion, the computation of this matrix inverse is eased by this normalization.

Using the matrices A or W, which describe connection weights, we can equivalently define matrix B
describing direct partnerships between the nodes of the network. The general element of this matrix
is defined as

b = 1, haal-j>0
ij—{O, haaij=0

(2)

Matrix B can be regarded as an indicator function which takes the value of 1 if i and j are direct
neighbors in the network and it is O if they are not.

The matrices A, W and B describe network structure and connection intensities. Another crucial
ingredient in our approach is the knowledge level possessed by each node in the network. These
knowledge levels are contained in the vector q = [q;], where q; is an appropriate measure of
knowledge level at node i. Without losing generality, we normalize these knowledge levels with the
average knowledge level:

qi

ko= —dt
Y Xiqi/n

3)



The k; normalized knowledge levels are groups in vector Kk, and reflect the extent to which a given
node’s knowledge is higher/lower than average in the network.

Finally, we define the direct neighborhood of node i as N{ = {j|b;; = 1}, i.e the set of those nodes
which are in direct connection with i.

2.2 Knowledge access position for the direct neighborhood
Using the definitions set forth above, we define the knowledge access position of node i with respect

to its direct neighborhood as
jent jlent
(4)

The first term on the right hand side of equation (4) sums the knowledge levels of direct partners,
weighted by the strength of connection, pointing to the given partner. The second term sums the
connection intensities between the direct partners. These direct-neighborhood scores can be written
in a compact matrix form as follows:

z' =Wk + (BoWB)T1
(5)
where o denotes element-wise matrix multiplication and 1 is a vector full of ones.

The main novelty of this version compared to that of Sebestyén and Varga (2013a, 2013b) is that here
connections weights w;; and knowledge levels are interacting directly at the node/connection level,
and then these interaction terms are summed over the direct neighborhood. In contrast, our previous
approach aggregated knowledge and connection intensities at the neighborhood level first and the
interaction was implemented at this aggregated level.

2.3 Knowledge access position for the whole network

The scores calculated for the direct neighborhood in (4) and (5) can be extended to include the
knowledge which is accessible from farther parts of the network, through the direct partners. In order
to do this, we use a recursive approach. Once the scores for the direct neighborhoods are calculated
for all nodes, we assume that the knowledge access positions of the direct partners also contribute to
the value of network position, weighted by the connection intensity through which they connect to
the node in question. Formally, we write

Zi = Zil +ZWUZ]
J

(6)
With matrix notation, we can comprise (6) as
z=12'+Wz
(7)
and we can express the final z; scores in vector z as

z=(1-wW)1z!



(8)

Substituting (5) into (8) shows that these knowledge access position scores (z;) can be calculated from
matrix W, B and vector K, i.e. information on the network structure and knowledge levels.

This approach is again somewhat different from that of Sebestyén and Varga (2013a, 2013b). While
the latter solution explicitly goes through all neighborhoods at different distances, using an exogenous
parameter to discount neighborhoods farther away, in this new solution the recursive definition
implicitly considers all neighborhoods and gets rid of using an exogenous distance decay parameter.

2.3 Understanding the KAPIS index

The previous section has provided the definition of the Knowedge Access Position in Innovation
Systems (KAPIS) index. In this part, we are going to use some illustrations in order to interpret the
scores provided by this method. First, we derive the scores under a complete and symmetric network
structure. Then, two sample networks are used to illuminate the working of the method in incomplete
networks. Finally, we provide some comparison with standard measures of network centrality.

2.3.1 The KAPIS index in a complete and symmetric network

It is useful to establish how the KAPIS indices defined in (8) look like if the underlying network structure
is complete and symmetric, i.e., all connections exist and have equal weight. Also, the knowledge levels
are equal across nodes. In this case we have zeros on the main diagonal of matrix A and ones
everywhere else. Given that the size of the network is n, the normalized weight matrix W contains
zeros on its main diagonal and w;; = 1/[n(n — 1)] everywhere else. If knowledge levels are identical,
then k; = 1 for all i. As all nodes are direct neighbors to all other nodes, the scores in (4) simplify to

-1t -Dn-2)— =11
o nn—-1) nn—-1) n

)

where the first part marks that (n — 1) direct partners enter with weight 1/[n(n — 1)] and knowledge
level 1, while the second part shows that there are altogether (n — 1)(n — 2) connections among the
neighbors with the given weight. It can be shown (see the Appendix) that in this case the full-network
knowledge access position indices (z; scores) equal to 1. As a result, the complete network serves as a
natural reference point for the KAPIS index which becomes unity in this special case for all nodes. If
the network becomes sparser (connections are deleted), the value of the index becomes smaller. It is
easy to verify that in the empty network where w;; = 0 everywhere, the KPAIS index becomes 0.

While being size-independent is appealing on the one hand, it makes it difficult to compare the
resulting scores across different networks on the other. However, the raw score can be scaled
according to some natural quantity of interest. For example, we may use the total knowledge level or
the total number of connections as a scaling factor. In this case the resulting scores will show that how
much of the total knowledge is accessible from a given position in the network. In the next section we
present a simple example in this fashion.

2.3.2 The KAPIS index in a simple reference networks

Figure 1 below shows a simple reference network with n = 5 nodes. The highlighted node 1 is the
most central actor, while nodes 2, 3 and 4 have symmetric, relatively well-connected positions and
node 5 is a peripheral one with only one connection. We assume the connection weights to be of the
same size (unity) and knowledge levels to be identical (unity).



1. Figure — A simple reference network

In table 1, we summarize the calculated KAPIS scores as in (8). We indicate the zl-1 scores for the direct
partners and the final z; scores for the whole network. In addition to the absolute scores, we present
the relative scores compared to that of node 1 in both cases.

Node A: KAPIS for direct partners B: KAPIS for whole network Difference
Absolute Nodel = 100% Absolute Nodel = 100% EHLEEN

Band A

1 0.7143 100 0.9008 100 26.11%

2 0.6429 90 0.8251 91.59 28.34%

3 0.6429 90 0.8251 91.59 28.34%

4 0.6429 90 0.8251 91.59 28.34%

5 0.0714 10 0.1358 15.07 90.08%

1. Table — KAPIS scores for the sample network in Figure 1

The numbers of the direct neighborhood reflect that the most valuable position is that of node 1 which
is connected to all other nodes and has a dense neighborhood with respect to nodes 2, 3 and 4. The
latter nodes has a 10% lower score, identically, reflecting their identical position in the network. While
node 1 has direct access to all 5 units of knowledge in the network (1 at each node), its neighborhood
lacks 3 connections (connections between node 5 and the other three). This means that the direct
neighborhood score without normalization would be 4 + 6 = 10. Now if we look at node 2, it has direct
access to 3 units of knowledge, while its direct neighborhood also counts 3 connections, so its non-
normalized score for the direct neighborhood would be 3 + 6 = 9. This explains the 10% difference
between the direct scores of node 1 and node 2. Similarly, as node 5 is very peripheral with only one
direct partner, its score is much lower.

Looking at the absolute scores obtained for the whole network (i.e. according to (8) reveals that these
scores are higher than the direct scores. This shows that the KAPIS index positively evaluates the role
of indirect connections and the knowledge which is channeled to certain nodes through these indirect
connections. In order to understand the nature of these differences, we should recall that the matric
inverse in (8) can be written as the infinite sum

A-W)1=1+W+W?+ W3+
(10)

It is known that the powers of the adjacency matrix reflect the number of walks between any two
nodes with length corresponding to the given power. As a result, the elements of this matrix inverse
reflect the overall strength of direct and indirect connections between any two nodes in the network.
In other terms, a given row of this inverse matrix contain weights for the node corresponding to the
row reflecting its connection strength to all other nodes in the columns. Now, recalling (8) it can be
seen that the final z; scores are weighted sums of the zl-1 scores where the weights reflect direct/indirec

connection intensity and the z} scores reflect the embeddedness of the nides in their direct



neighborhoods. The identity matrix on the right hand side of (10) ensures that own direct
neighborhoods get the highest weight in all cases.

The last column of Table 1 shows that the additional value given by the indirect connections is roughly
one quarter for nodes 1, 2, 3 and 4 while the score almost doubles for node 5. This is explained by the
fact that for the first 4 nodes there is a minor part of the network outside of the direct neighborhood
(for node 1 this addition only reflects recursive walks/connections within its direct neighborhood),
while for node 5 the majority of knowledge and density in the network is found outside its direct
neighborhood. This is also reflected by the relative scores in the whole network case: taking into
account the whole network, the z; scores are somewhat compressed than the zl-1 scores on the direct
neighborhood. This is because the knowledge and density accessible beyond the direct neighborhoods
is larger for node 5 in the periphery compared to nodes 1, 2, 3 and 4 which are in the center.

2.3.3 The KAPIS index relative to existing positional measures

The recursive definition in (8) raises the question if our approach has something in common with the
eigenvector centrality measure which is standard in network analysis. The eigenvector centrality is also
based on a recursive definition and assumes that a node in a network is more central if it is surrounded
by other central nodes.

Figure 2 summarizes the results of a small simulation exercise, where we generated a random network
of the ErdGs-Rényi type with 1000 nodes. The knowledge levels were generated randomly from a
normal distribution, but correlated with the degree of nodes (more central nodes possess more
knowledge). Then, we calculated the KAPIS for all nodes, given these knowledge levels and also
calculated the eigenvector centralities for the nodes. Panel A in Figure 1 shows the correlation between
eigenvector centrality and KAPIS, which proves to be quite strong. Then, we calculated the clustering
coefficient for all nodes (the density of the direct neighborhood) and also calculated the difference
between KAPIS and the estimated deterministic relationship between eigenvector centrality and KAPIS
(marked by the red line in panel A). Panel B shows how clustering of nodes correlate with the over- or
underestimation of eigenvector centrality by KAPIS. The significant positive correlation reflects that in
the KAPIS index we not only take into account centrality (which is mostly captured by eigenvector
centrality in a similar way), but also the density of neighborhoods — which is reflected by clustering.
KAPIS is going to be systematically higher than eigenvector centrality for those nodes which are more
strongly (and directly) embedded in intensive collaboration structures.
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2. Figure — KAPIS versus eigenvector centrality

Panel C in Figure 2 shows a similar analysis with respect to knowledge levels. Here, we calculate the
knowledge level of direct partners and this is correlated with the difference between observed KAPIS
and estimated eigenvector centrality. The picture shows that there is no correlation between the two
factors. The main conclusion is that while the difference between eigenvector centrality and KAPIS is
explained by clustering, the knowledge level of partners do not affect this difference. Panel D uses an
alternative approach where the relative difference between the KAPIS index and the eigenvector
centrality of a node is measured on the horizontal axis. In this case there is a strong positive correlation.

To sum up, our KAPIS index is a close relative to the eigenvector centrality which captures centrality in
a complex manner. However, in addition to centrality, the KAPIS index is also sensitive to the clustering
of nodes’ neighborhoods (strong collaboration density) and to the level of knowledge available at
partners.

3. The REDI

In this section we briefly refer to the Regional Entrepreneurship and Development Index as a measure
for entrepreneurship at the regional level. This description is based on the report in Varga et al. (2018).

3.1 The structure of REDI

The Regional Entrepreneurship and Development Index (REDI) has been constructed for capturing the
contextual features of entrepreneurship across EU regions. The REDI method builds on the National
Systems of Entrepreneurship Theory and provides a way to profile Regional Systems of
Entrepreneurship. Important aspects of the REDI method including the Penalty for Bottleneck (PFB)
analysis, which helps identifying constraining factors in the Regional Systems of Entrepreneurship. The
novelty of this method that it portrays the entrepreneurial disparities amongst EU regions and provides



country and regional level, tailor-made public policy suggestions to improve the level of
entrepreneurship and optimize resource allocation over the different pillars of entrepreneurship.

A six level index-building methodology is followed while creating the REDI index: (1) sub-indicators (2)
indicators (3) variables, (4) pillars, (5) sub-indices, and finally (6) the REDI super-index. The three sub-
indices of attitudes (ATT), abilities (AB), and aspiration (ASP) constitute the entrepreneurship super-
index, which is called REDI. All three sub-indices contain four or five pillars, which can be interpreted
as quasi-independent building blocks of this entrepreneurship index. Each of the 14 pillars is the result
of the multiplication of an individual variable and an associated institutional variable. In this case,
institutional variables can be viewed as particular (regional-level) weights of the individual variables.

e (s O e il

ol kil
e pl I i e

Tt siees | FRRROLAL TGS AR AL (O TETIATIT

balizstion CONNECTIVITY EHBCRT
[ Digh gricsih CLUSTRRIPYS GAEELLE

Freevss iweatton | CECBNOLOGY BEVELGPMENT | MW TROHROLOGY

et peemitn | TREIRGLSY TRANSFAR R SRATART

Ot | angrmEss soRarRay | COMFENTRS
| Flaizn copatal FWH AT & A TS [SENEREA N E A

Tocdaslngy morser | ARSORPIIVE QSRACTY | TRCHROLGY LEVEL |

Cppetaony slackap  BURIHESS BRAIROWENT CRCBTUMITY MUSTIATICR

Thliural suppect | OPEN SLKCIEITY | carmmes sravus |

Flodw v RIIAL CAPITAL I s DA RS '
| s svapranee | BUSINESS BIEK | BUsINESS ACCERIARCE |
| Savnp stetls CQUALITY T EIARIATION BEILL SRS TR T

LI MIARKET ACHELOMEE £ 100 SEPORTTAITY B REORs

perveptie

3. Figure — The structure of the Regional Entrepreneurship Development Index

3.2 The creation of the Regional Entrepreneurship and Development Index
All pillars from the variables are calculated using the interaction variable method; that is, by multiplying
the individual variable with the proper institutional variable:

Zi,j = INDl'] * INSL']
(10)

forall j= 1 ... k, the number of individual and institutional variables. IND,; ; is the original score value
for regioniand variable j individual variable, INS; ; is the original score value for region i and variable
j institutional variable, z; ; is the original pillar value for region i and pillar j.

All index building is based on a benchmarking principle. The selection of the proper benchmarking
considerably influences the index points and also the rank of the regions. However, the existence of
outliers could lead to set up inappropriate benchmarks. Hence, it is needed to handle extreme value
outliers. Capping is also frequently used to handle outliers. The question relates to the value of the
cap. The 95-percentile score adjustment is selected meaning that any observed values higher than the
95 percentile is lowered to the 95 percentile. It also means that at least five percent of different regions
reach the maximum value in all of the 14 pillars. Like other composite index components, the pillars
are in different magnitudes. In order to be in exactly the same range, the normalization of the pillars



is necessary. After handling the outliers the pillar values are normalized, where the distance
normalization technique was used that preserves the distance (relative differences) amongst the
regions:

Zi,j

xX; s = ————
" maxz;

(11)

for all j=1,..m. m=14 is the number of pillars, x; ; is the normalized score value for region i and pillar
J» 2 j s the original pillar value for region i and pillar j, max z; ; is the maximum value for pillar j.

Applying the distance methodology the pillar values are all in the range [0,1], however the lowest pillar
value is not necessary equal to 0. In this case all regions’ efforts are evaluated in relation to the
benchmarking region but the worst region is not set to zero per se.

The different averages of the normalized values of the 14 pillars imply that reaching the same
performance requires different effort and consequently resources. Higher average values - e.g.
Opportunity startup — could mean that it is easier to reach better scores as compared to lower average
value —e.g. Financing. Since the aim is to apply REDI for public policy purposes, the additional resources
for the same marginal improvement of the pillar values should be the same for all of the 14 pillars, on
the average. So improving by 0.1 unit Opportunity startup should require the same additional resource
as compared to all the other 13 pillars. As a consequence, we need a transformation to equate the
average values of the 14 pillars.

Practically we have calculated the average values of the 14 pillars after the capping adjustment and
the normalization and made the following average adjustment. Let’s x_i to be the normalized score
for region i for a particular pillar j. The arithmetic average of pillar j for region n regions is:

n
(12)
We want to transform the x_{(i,j) values such that the potential values lay in the [0,1] range.
Vij = X
(13)

where k is the “strength of adjustment”, the kth moment of ¥; is exactly the needed average, y;. We
have to find the root of the following equation for k:

n

zxffj—ni/j =0

i=1
(14)

Itis easy to see based on previous conditions and derivatives that the function is decreasing and convex
which means it can be quickly solved using the well-known Newton — Raphson method with an initial
guess of 0. After obtaining k, the computations are straightforward. Note that if

X<y k<1



x>y k>1
(15)
that is k be thought of as the strength (and direction) of adjustment.

We have defined entrepreneurship as the dynamic interaction of entrepreneurial attitudes, abilities,
and aspirations and developed the Penalty for Bottleneck (PFB) methodology for measuring and
quantifying these interactions (Acs et al., 2013a; Rappai and Szerb 2011). Bottleneck is defined as the
worst performing weakest link, or binding constraint in the system. With respect to entrepreneurship,
by bottleneck we mean a shortage or the lowest level of a particular entrepreneurial indicator as
compared to other indicators of the sub-index. This notion of bottleneck is important for policy
purposes. Our model suggests that attitudes, ability and aspiration interact, and if they are out of
balance, entrepreneurship is inhibited.

The sub-indices are composed of four or five components, defined as indicators that should be
adjusted in a way that takes this notion of balance into account. After normalizing the scores of all the
indicators, the value of each indicator of a sub-index in a region is penalized by linking it to the score
of the indicator with the weakest performance in that region. This simulates the notion of a bottleneck,
and if the weakest indicator were improved, the particular sub-index and ultimately the whole REDI
would show a significant improvement. To the contrary, improving a relatively high pillar value will
presumably enhance only the value of the pillar itself, and in this case a much smaller increase of the
whole REDI index can be anticipated. Moreover, the penalty should be higher if differences are higher.
Looking from either the configuration or the weakest link perspective it implies that stable and efficient
sub-index configurations are those that are balanced (have about the same level) in all indicators.
Mathematically, we model the penalty for bottlenecks by modifying Casado-Tarabusi and Palazzi
(2004) original function for our purposes. The penalty function is defined as:

Ry = min ygp, + |1 - e”Cormmo))|
(16)

where h(; ; is the modified, post-penalty value of pillar j in region i, y;); is the normalized value of
index component j in region i, min y;) ; is the lowest value of y(;); for region i. i = 1,2,...n is the
number of regions, j=1,2,...m is the number of pillars.

Definitely, the advantage of this method that it is an analytical method, therefore it is not sensitive to
the size of the sample. There are two potential drawbacks of the PFB method. One is the arbitrary
selection of the magnitude of the penalty. The other problem is that we cannot exclude fully the
potential that a particularly good feature can have a positive effect on the weaker performing features.
While this could also happen, most of the entrepreneurship policy experts hold that policy should focus
on improving the weakest link in the system. On the other hand, both theories emphasize the
importance of balanced performance and characteristics. Altogether, we claim that the PFB
methodology is theoretically better than the arithmetic average calculation. However, the PFB
adjusted REDI is not necessary an optimal solution since the magnitude of the penalty is unknown. The
most important message for economic development policy is that improvement can only be achieved
by abolishing the weakest link of the system, which has a constraining effect on other pillars.

Due to the average pillar adjustment the marginal rate of substitution becomes the same for all
indicators. However, the real substitution rate of the pillar values of a particular region depends on the
weakest pillar’s relative ratio compared to other pillars. Most importantly, the penalty function should



reflect to the magnitude of the penalty, lower difference implies lower penalty while higher unbalance
implies higher penalty. The penalty function also reflects to the compensation of the loss of one pillar
for a gain in another pillar.

The value of a sub-index for any region was then calculated as the arithmetic average of its PFB-
adjusted indicators for that sub-index multiplied by 100 to get a 100 point scale:

5
j=1
10

ABTL = 100 hi,j

(17)

where h_{(i,j) is the modified, post-penalty value of pillar j in region i, i=1,2,.....n is the number of
regions, j= 1,2,..m is the number of pillars.

The REDI super-index is simply the arithmetic average of the three sub-indices:
1
REDI; = §(ATTi + ABT; + ASP;)

(18)

where i=1,2,......,n is the number of regions.

4. Integrating the KAPIS and REDI indices — interconnected

entrepreneurial ecosystem

In this section we provide a first attempt to integrate the two indices, the KAPIS and the REDI indices.
The underlying logic behind this integration is that regional entrepreneurial ecosystems are not
isolated from each other. Actors in the local ecosystems may be connected to actors at other places,
thus contributing to an interregional network of knowledge flows which can contribute to the
performance of these systems.

So what we do is that we utilize properties of the KAPIS index which is able to describe the position
within such knowledge networks of the regions under question. However, instead of directly using
some proxy for knowledge levels in the KAPIS index, we integrate the REDI as the g; knowledge levels.
This solution can be interpreted as a comprehensive measure of interconnected entrepreneurial
ecosystems through innovation connections. The local conditions of entrepreneurship and also some
aspects of the local innovation systems are accounted for in the REDI, while the connectedness of
these local conditions is taken into account by the KAPIS index. This integration is able to reflect how
interregional cooperation contributes to local resources behind entrepreneurship, thus providing a
more complex picture of the latter.

However, there is another modification required for the KAPIS index to fully accommodate this
framework. The KAPIS index was designed to take into account the external knowledge sources
available to a given node, so it does not calculate with the knowledge level of the node under question.
As a result, it does not reflect automatically the quality of the local ecosystems. However, a simple



modification to the structure of the index solves this issue. Equation (4) has to be modified in the

following way:

jENE jlent
(19)

which means the addition of the local (region i) normalized REDI as k;. This way, we take into account
the local entrepreneurial ecosystem as measured by REDI with a unit weight in the KAPSI index.

In the next subsection we describe the data used for this exercise and then we present some
preliminary results.

4.1 Data
With respect to the REDI scores, we use the data as described and analyzed in Szerb et al. (2017).

With respect to data on network connections, we use information available on EU-funded Framework
Programmes. This information can be retrieved from the Cordis database. For the analysis in this paper,
we use information on all projects funded in the three waves of the Framework Programmes: FP5, FP6
and FP7 which means that the data covers the years from 1999 to 2013. The basic unit of this data is a
project-participant pair. This means a particular institution (as participant, e.g., university, company)
being involved in a funded project. First, we use information on the projects: the contract numbers of
the specific projects are used as unique identifiers, and the duration (starting and ending years) of the
projects allow us to have a longitudinal approach on the collaboration patterns. Second, information
on the participants is used: their location, as the NUTS3 level region they belong to and the type of the
institution (e.g., higher education institution, industry actor).

This data had to go through two waves of data cleaning. First, we had to clean regional classification.
Although the Cordis dataset provides NUTS3-level categorization of the participants, this is not
complete and come with errors in several cases. We did a complete re-classification in this respect
based on the information on postal codes, addresses and cities provided in Cordis. If this information
was not enough, manual checks were done to assign a clean regional code at the NUTS3 level to all
institutions. Second, as the participant identifiers provided by Cordis are similarly problematic,
especially to be used across different FP programmes, we did a complete re-identification of
institutions. Using information on the name, location (region) and address of the participants we run
a string-matching algorithm to reveal the similarity of every institution-pair. The same procedure was
done manually as well on a subsample of institutions. The latter provided reference-cases where we
were sure about which institutions are the same and which are different. This reference subsample
was then confronted with the algorithmic results, in order to establish an ambiguity range. Institution-
pairs with a similarity score below this range were assumed to be different, pairs above this range were
assumed to be identical. Pairs falling into the ambiguity range were manually checked again to finally
arrive at a clean identification of institutions.

In the cleaned dataset we have information about every funded project, the duration of the project,
the participants of the project, their location at the NUTS3 level and their type being higher education
institution, research institution, industry actor or other. In this analysis we consider only the first three
types with merging research institutions and higher education institutions into one category. For
simplicity, we will refer to the latter group as research institutions in general.



Before we go into the details about the data manipulation, we have to note that the data we are using
reflect an important, but specific aspect of innovation (scientific) networks. First of all, the cooperative
connections recorded in this dataset reflect research cooperation: while it is able to reflect how and
where the generation of new knowledge is attempted, these records do not show whether these
attempts are successful or not (e.g., in the form of scientific publications or patents). Also, the records
are selective in the sense, that we have information on funded projects and unsuccessful applications
as well as research collaboration without formal infrastructure are out of sight.

Our starting point for data manipulation is the project matrix P the rows of this matrix correspond to
institutions whereas the columns represent projects. A given cell of the matrix is one if institution i
was participating in project k. From this project matrix, simple matrix manipulation provides the
adjacency matrix A for all years in our sample: A = PPT, where PT is the transpose ofPT. The resulting
A adjacency matrix provides the number of ongoing joint projects between any pair of institutions.
Being our starting point for further calculations, this adjacency matrix gives a snapshot of collaboration
patterns between institutions with a weighted perspective: we account for the number of joint
projects, reflecting the intensity of collaboration.

The abovementioned adjacency matrix A contains information between all pairs of institutions,
regardless of their location (region) and type (research institution or industry actor). In order to
account for these features, we use two categorization vectors. d” refers to the type of institutions: it
has one entry (row) for all institutions and contains 1 of the given institution is a research institution
and 2 if it is a company/industry actor. Similarly, d¥ refers to the location of institutions and one entry
(row) contains the index of the region the institution belongs to.

In order to ease further exposition, we reshape the adjacency matrix A into an array W which
structures connections between institutions along their location and type as well. The general element
of it is defined as follows:

— R _ R _ T _ T _
Wrriqgj = Quldl, =7.d, =q,di, =f,d;,=g

In other words, wys; 44 describes the number of joint collaboration projects between institution i of
type f inregion r and institution j of type g inregion q. Here the indices f, g = 1,2, indicating whether
institutions are companies (1) or research institutions (2). Then, r,q = 1,2, ..., R refer to region indices,
while i,j = 1,2, ..., Iz, reflect the indices of institutions. Note that If,is different for all region r and
institution type f, representing the number of institutions of the given type in the given institution.

4.2 Preliminary results

In what follows, we present the results of a first sample of calculations with the integrated tool. We
use the REDI scores for 2007-2011 and the respective average number of FP collaboration ties between
regions to calculate the KAPIS scores. In order to take into account the fact that REDI scores are
available for a different set of regions (there are NUTS1 and NUTS2 regions in the sample), the
collaboration ties were normalized by the population of the given regions.

Once the KAPIS scores are calculated, we get a score for every region, reflecting the overall
entrepreneurial ecosystem in a given region together with its interregional embeddedness. Those
regions are ranked higher in this scoring which have a good access to extra-regional entrepreneurial
ecosystems in addition to their local environment. In other terms, to have a high score, a region needs
to have both a good local ecosystem and a rich network of other ecosystems in their reach.
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4. Figure — The REDI and R-Entinn scores

In figure 3, we visualized the relationship between the original REDI scores (on the horizontal axis) and
the R-EntInn index (the integrated REDI-KAPIS index) (vertical axis). In both cases, the original scores
were normalized with the mean of the given dimensions, so the two axes measure the relative
deviation of the given score from the mean (the mean equals 1). The blue bubbles represent the
regions included in the analysis and the red line shows the least squares fit which crosses the 1-1 point
in the middle.

The first observation is that there is a clear positive relationship between the REDI and the integrated
index which is not surprising as the former enters the latter on a one-to-one basis. As a result, what is
more interesting is the deviation of the observed R-Entinn scores from the one indicated by the red
line. Second, the REDI scores are more dispersed: they more-or less uniformly cover the 0.3-2 range.
However, the R-EntInn scores are less disperse, much of them is found in the 0.6-1.5 range. This lower
dispersion strongly reflects the structure of the FP-collaboration network. This network is relatively
dense, which means that many of the regions have quite a few links to others. On the other hand, most
of the regions, even if they are not the most developed from an entrepreneurial perspective, are
directly or indirectly connected to the best performing regions in the REDI scores. This means that
interregional connections are able to compensate for a less-developed local entrepreneurial
ecosystem. The three outliers to the bottom of the figure correspond to those regions which are not
integrated to the interregional innovation network at all.

Figure 3 shows another important tendency: significant deviations from the average KAPIS score
correlate with the REDI: those regions can benefit significantly more from their partners which are
relatively worse in the REDI ranking as well. This is line with previous findings in the literature which
shows that relatively less developed regions (typically with a low REDI score and weak innovation
systems) can benefit more from extra-regional linkages, while for places with rich local resources for
innovation and entrepreneurship these relationships are not crucial



Conclusion

In this paper we established integrated the REDI and KAPIS indices in order to set forth a
methodological tool which is able to comprehensively account for the characteristics of local
entrepreneurial ecosystems and innovation systems while also reflecting the interconnectedness of
these local systems shaping the availability of local resources. By integrating the two tools, we are able
to set up a framework for jointly analyzing the role of local conditions and also interregional
embeddedness in shaping the entrepreneurial environment. After setting up the framework, we used
data on REDI scores and data on Framerwork program collaborations to proxy interregional knowledge
networks. This data was used to calculate the integrated R-Entinn scores. Our results show that
embeddedness in a relatively dense network of FP collaborations can significantly dampen the
variability in the final scores by providing access to highly developed regions for less favored ones.

Our further work can focus on primarily two extensions. First, we can use the institutional dimension
of the Framework Program data in order to provide a more detailed picture of the role of interregional
connectedness of entrepreneurial ecosystems. Second, this framework may be employed to estimate
the effect of interregional connectedness on the quality of the local entrepreneurial ecosystems.

Koszdnetnyilvanitas

A tanulmdny az Eurdpai Unié, Magyarorszag és az Eurdpai Szocidlis Alap tarsfinanszirozdsa altal
biztositott forrasbdl az EFOP-3.6.2-16-2017-00017 azonositéju "Fenntarthatd, intelligens és befogadé
regionalis és varosi modellek" cim( projekt keretében jott 1étre.
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