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Abstract 
Interventions targeting the support of interregional knowledge networks have become an 
increasingly important part of modern regional development policy. However our knowledge 
is limited with respect to the potential economic effects of concrete policy interventions. In 
order to examine these effects we developed and agent based model of network formation. 
We discuss the model in detail and provide the results of a simulation exercise the purpose of 
which is to illustrate the potential use of the model within a broader economic impact 
assessment framework. 
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Knowledge networks in regional development. An agent based model 
and its application1 
 
1. Introduction 
Interventions targeting the support of interregional knowledge networks have become 
an increasingly important part of modern regional development policy (McCann, 
Ortega-Argilés 2013). Recent debates within the realm of smart specialization policies 
also call the attention to the importance of learning from external sources, which is 
supposed to be an important tool in the hand of policymakers (Foray 2015, McCann, 
Ortega-Argilés 2015).  
 
Besides anecdotal evidences (see e.g. Foray et al. 2011), there are a growing number 
of studies in the literature, which underline the potential effectiveness of these 
policies. Varga and Sebestyén (2013, 2017) compare Central and Eastern European 
(CEE) less developed regions with regions of old EU member states from the 
perspective of their capacity to absorb knowledge from research networks in two 
broad scientific fields supported by the EU Framework Programs (FPs). They found 
that knowledge accessible from FP networks affects regional innovation of CEE 
regions positively and significantly whereas the corresponding impact on regions of 
old member states was not significant. This finding clearly marks that a policy, which 
targets the improvement of network embeddedness is a viable option in these lagging 
regions.  
 
Wanzenböck and Piribauer (2017) support the above findings by showing that lagging 
regions with lower levels of local knowledge resources have better chances to exploit 
the positive innovation effects of FP program participation. Closely related to these 
results Maggioni et al. (2017) emphasize that FP projects act more as possibilities for 
knowledge barter for core European regions whereas they act more as a one-way 
channel of knowledge diffusion from the core to lagging regions. Uhlbach et al. 
(2017) also conclude that participation in Framework Program projects can 
compensate lagging regions for the lack of locally available knowledge resources. De 
Nonic et al. (2017) arrive at the same conclusion by examining a panel dataset of 
regional patent data by showing that innovation performance in lagging regions is 
enhanced by increasing collaboration with knowledge intensive regions.  
 
Despite this evidence on the role of external knowledge channels in the case of 
enhancing innovation in lagging regions, our knowledge is limited with respect to the 
potential economic effects of concrete policy interventions targeting network 
formation. In order to gain insights into these effects, one needs specially developed 
economic models, which capture the effects of network policies (Varga et al. 2017). 
In order to examine these effects we need a tool, which is able to capture the complex 
cumulative dynamics of network formation, including the feedback mechanisms 
between regional economic and innovation-related variables and interregional 
knowledge links. Agent based modeling provides a suitable tool to capture complex 
dynamic processes where the interactions between the system elements (agents) are 
important. 

																																																								
1 The authors wish to thank Anna Csajkás for professional research assistance and Orsolya Hau-
Horváth for her contribution to a fromer versions of the model presented in this paper. We also wish to 
thank Manfred Paier and Thomas Scherngell for useful comments.  
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The literature provides some model concepts which can serve as a good basis for 
policy impact modeling with respect to knowledge networks. The SKIN model is a 
widely used tool, which captures the complexity of knowledge lying behind the 
innovation process (Ahrweiler et al., 2004, Pyka et al., 2007; Gilbert et al., 2001, 
Korber and Paier, 2011, 2013). Although this model is able to capture cooperative 
knowledge creation, its main purpose is to model the whole innovation process and as 
a result it proves to be too complex to be integrated into an economic impact analysis 
model on the one hand and its scope is wider than the focus on link formation on the 
other hand. Some other models focus on the behavior and motivation of firms in the 
innovation process where link formation is again of secondary importance (e.g. Pyka 
and Saviotti, 2002; Beckenbach et al., 2007; Heshmati and Lens-Cesar, 2013). 
 
Our goal therefore is to set up a model of network formation, which can be used in 
policy impact analysis. This model has to fulfill at least two goals. First, it needs to be 
simple as it is part of a complex economic impact model in which not only the direct 
effects of network policies on collaboration intensities or innovation activities can be 
traced but also their wider economic effects on the regional and national levels. 
Second, it must be able to capture, at least partially, the complex dynamics behind 
network formation, and its main focus must be network formation while less emphasis 
is put on other aspects of the innovation process. In addition to the previous two 
points, the model needs to be easy to empirically applied, which means that in order 
to run reasonable policy impact scenarios, we need to bring the model down to the 
data which is another point why too much complexity is problematic. 
 
The paper is structured as follows. Section 2 provides a basically intuitive description 
of the model setting. Formal details of the model are summarized in the appendices. 
Section 3 then discusses the methods used to fill the model up with data, which is a 
two-step process consisting of the econometric estimation of a gravity model on the 
one hand and careful calibration of remaining model parameters on the other. Section 
4 shows the results of a simulation exercise the purpose of which is to illustrate the 
potential use of the model. The paper is closed by some concluding remarks and we 
also note some important areas for further model development. 
 
2. The model setup 
In this section we describe the basic principles, which govern our model, and provide 
a formal description of the dynamics behind agent behavior. In the first step, we 
introduce our concept of the social space in which the agents are assumed to move in 
order to form connections with others. Then, we introduce the gravity and counter-
force principles of the model. Finally agents’ motion is set out and finally we 
introduce the way the heterogeneity of agents are accounted for in the model.  
 
2.1 The social space 
The basic idea behind our model is to place the agents in a social space. Their 
closeness or distance in this space corresponds to the probability and willingness for 
them to form links. The social space is a straightforward concept originating from 
pairwise network connections. If we assume a network of agents, which are linked 
together by selective, and possibly weighted ties, it is easy to construct a matrix of 
network distances, where the elements of the matrix represent the length of the 
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shortest path2 between any two agents within the network. These distances can be 
regarded as social distances, describing how far the agents are from each other in the 
social sense. 3  In principle, these network distances are independent of the 
conventional Euclidean space concept, but with the help of appropriate algorithms 
one can map the agents into Euclidean space of arbitrary dimension. In the present 
model setting we use a two-dimensional social space concept. This means that agents 
are placed in the two dimensional Euclidean space and we assume that their Euclidean 
distance within this space represent their social distance.4 Then, agents can move 
within this space which then allows them to get closer or farther from each other. The 
main variable of an agent in our model is its position in the social space. As this social 
space is assumed to be two-dimensional, a pair of coordinates (𝑥!,!! , 𝑥!,!! )  fully 
describes the position of agent 𝑖 in a given period 𝑡. Appendix A introduces the 
solution we applied to scale down network distances to a two-dimensional space. 

2.2 The gravity principle 
The idea behind agents’ motion in the social space is borrowed from physics, and 
builds on the gravity principle: there is an attraction force between any two bodies, 
which positively depends on the mass of the bodies and negatively on the distance 
between them. The force of gravity is able to set otherwise static bodies into motion. 
 
In our context agents are assumed to search for partners to collaborate with. In other 
terms, agents’ behavior is basically determined by a desire to find connections with 
others. In the social space context this means that they would like to get closer to 
those other agents with whom they want to intensify collaboration. It is 
straightforward to say then that these agents are driven by attraction forces towards 
each other and this attraction force depends on the desirability of the other partners. 
Building on the gravity principle borrowed from physics, this desirability is then 
determined by the sizes of the two agents in question and their distances. As a result 
of this reasoning, we define an attractiveness measure 𝐴!,!,! among any two agents 𝑖 
and 𝑗 in a given period 𝑡. In general, this attractiveness is determined by the sizes of 
the two agents (𝑀!,! and 𝑀!,!), and their distance (𝐷!,!):  
 
 𝐴!,!,! = 𝑓(𝑀!,! ,𝑀!,! ,𝐷!,!). (1) 

 
2.3 The counter-force principle 
The gravity principle reflects agents’ desire to collaborate with others. On the other 
hand agents also face costs of making new connections, which serve as a counter-
force to the attraction force of gravity. These costs may come reflect transaction costs 

																																																								
2	By shorthest path between node A and node B we mean the minimum number of links through which 
B can be reached from A. If the links of the network are weighted, and the weights are interpreted as 
intensities or proximities, then the inverse of these weights are used to calculate shortest paths. See e.g. 
Wassermann and Faust (1994) or Barabási (2016) for more details. 
3 Two agents who are linked by a strong tie are socially proximate whereas two other agents who are 
indirectly linked together with many ties of small intensities are socially distant. 
4 The choice of the two dimensional Euclidean space is due to visual considerations: using this low 
dimensional representation, we are able to graphically represent agents’ motion in the model, which 
helps in the interpretation of the results and predominantly understanding how the model works. An 
area for further developing the model would be to increase the dimensionality and check if the model 
performance improves. 	
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like travelling or the opportunity cost of maintaining links (time).5 Following the 
analogy with physics, if the force of gravity moves agents closer to each other, this 
counter-force keeps agents in place, obstructing its movement toward its goal. The 
intuition behind the use of the counter-force is that the benefits from new connections 
must exceed the cost of link formation in order to observe a new link to be formed. In 
the model we implement this cost in the form of a counter-force, pointing exactly to 
the opposite direction compared to where agents initially would like to move. As a 
result, the counter-force restricts the ability of agents to move away from their initial 
positions.  
	

2.4 Agent heterogeneity 
An important element of agent based models is that they are able to capture diversity 
of the agents in an explicit way. In our model we implement agent heterogeneity in 
several ways. First of all, the very nature of the model gives rise to heterogeneity in 
the sense that they are placed at different positions of the social space and their 
pairwise attractiveness measures can be different partly due to this positioning and 
partly due to heterogeneity in the individual variables used in the gravity equation. 
Also the coefficients for the mass variables in the gravity equation (proxied by R&D 
expenditures) are heterogeneous as they depend on other relational variables 
(cognitive proximity).6  
 
Second, we assume that agents are restricted in their cognitive capacities with respect 
to evaluating and ‘following’ all other agents. It is reasonable to think that agents are 
not able to take account of all possible partners, only a subset of them. We implement 
this intuition with a parameter 𝐴𝑃, which describes the extent of agents’ capacities to 
take account of other agents.7 This solution implements additional heterogeneity in 
the model as the ordered list of partners (based on attractiveness) is different across 
agents and as a result, all agents are going to ‘follow’ a different set of other agents.  
 
Third, we assume that the speed of agents can be different. This agent-specific speed 
is linked to the size of the agent. This heterogeneity may reflect the fact that finding 
cooperating partners may be more or less desirable for different agents. Some agents 
may find it more prompting to find partners than others. We assume that this 
heterogeneity is reflected by an agent-specific speed parameter 𝑆! driven by agent 
size, but the direction of this relationship is left to be determined through calibration.8 
 
Fourth, we assume that agents are different with respect to the cost of their link 
formation. This assumption corresponds to differences in capacities in link formation, 
which may result in different costs of forming new links. This heterogeneity is 

																																																								
5 See for example Bala and Goyal (2000), Jackson and Wolinsky (1996) or Carayol and Roux (2009) 
for some stylized models of network formation with a cost factor. 
6 See section 3.3 for the details on the estimated gravity equation. 
7	If there are 𝑁 agents in the model, parameter 𝐴𝑃 takes integer values between 1 and 𝑁 − 1 and 
shows the number of other agents one can keep pace of. In other terms, we assume that agents only 
take into account the first 𝐴𝑃 most attractive partners. If 𝐴𝑃 = 𝑁 − 1 then they have full information 
whereas if 𝐴𝑃 = 1 then they only ‘follow’ the most attractive agent.  
8 See Appendix A for the details of the implementation of speed heterogeneity. 
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implemented through idiosyncratic counter-force strengths 𝐵𝐹! and in an analogous 
way to heterogeneous agent speed.9   

3. Model estimation and calibration 
In this section we focus on the methods of fitting this model to empirical data. First, 
we introduce the data used for estimation, then we separately describe the two main 
steps of empirical fitting: (i) the econometric estimation of the gravity model as the 
backbone of the model and (ii) the calibration of the remaining model parameters in 
order to improve the fit of the model. Finally, the main results of the 
estimation/calibration process are summarized. 
 

3.1 Database 
The empirical information we use to fit the model is basically linked to the gravity 
model in equation (1).  All other parameters are calibrated, which means that they are 
optimized in order to get simulated network connection intensities as close to the 
observed ones as possible. Following from this, the data we use correspond to the 
variables appearing in equation (2), which is the empirical counterpart of the general 
gravity equation in (1).10 
 
In this paper we define agents as regions: a sample of 181 NUTS2 regions of the 
European Union is applied for 12 years between 2001 and 2012. This is the longest 
possible interval on which all the data detailed below are available. The first variable 
we use is a proxy for network connections among the regions. There are many 
possibilities to trace cooperation between individuals, firms, institutions, regions or 
countries like co-patenting or co-publication.11 In our study we build on information 
drawn from data on EU Framework Programs (FPs).12 Basically, we take all these FP 
projects and assume a link between two regions if institutions/firms from these two 
regions participated in the same project. This way we get a weighted network between 
our sample regions for every year in the sample where the weights reflect the number 
of FP projects the institutions/firms of the two regions cooperated in. In order to avoid 
large fluctuations in the observed network connections, we use a 5-year moving 
average of the raw network matrices obtained from FP data.13 
 
The second variable is the size of the agents, which is proxied by their total 
expenditure on research and development measured in real terms. The source of this 
data is the Eurostat database and we also use 5 year moving averages in order to 
harmonize these series with the collaboration data. 
 

																																																								
9 See Appendix A for the details of the implementation of counter-force heterogeneity. 
10 See section 3.3 for the details on the specification of the gravity model. 
11 For networks of co-publication, see for example Abbasi et al. (2011, 2012), Beadury and Clerk-
Iamalice (2010), Hopp et al. (2010) or Rumsey-Wairepo (2006). Co-oatenting networks are examined 
by Fischer et al. (2005), Maggoni et al. (2011) or Cassi and Plunket (2015). 
12 In these programs institutions and firms from different regions engage in cooperative research 
projects of different lengths and the collaborative nature of these projects allows us to infer on 
cooperation intensities between regions.	
13 These large changes are most likely in the case of less central regions – the majority – where one big 
project may significantly influence the cooperation intensities from one year to the other in the starting 
and ending years of the project. 
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The third variable in the gravity model is the cognitive proximity of the 
agents/regions. In this respect, we employ the technological overlap index proposed 
by Cantner and Meder (2007). This method takes into account the portfolio of patents 
in two regions with respect to the 8 main IPC classes and defines the index of overlap 
on the basis of similarity between these portfolios. This index lies between 0 and 1, 
the former referring to complete dissimilarity/distance whereas the latter showing 
complete similarity/proximity with respect to the patent portfolios which can be used 
as a reflection of cognitive similarities in the regions’ knowledge bases. As before, the 
raw data is transformed into 5-year moving averages to avoid large swings in the data. 
 
Finally, the gravity equation uses a second type of distance measure, the distance of 
agents in the two-dimensional social space. With respect to data use, this variable has 
a double nature. During the simulation of the model, these distances are endogenous, 
so that the dynamics of the model determine them. However, when the model is 
started, these distances are calculated from initial positions, which are based on the 
data.14 Social distances are simple Euclidean distances of two regions in the two-
dimensional social space. 
 
Table 1 below gives a brief summary of the data and data sources used for model 
estimation and calibration. 
 
Table 1 – Data and data sources used for estimation and calibration 

Variable Data used Source 
𝐶𝑂𝑂𝑃!,!,! Joint Framework Program 

projects between regions 𝑖 and 𝑗 
in year 𝑡 

Own calculations on the basis of 
the administrative database of 
FP 5, 6, 7 (DG RTD Dir A) 

𝑅𝐷!,! Total R&D expenditures of 
region 𝑖  in year 𝑡  measured in 
constant 2000 price and PPS  

Eurostat 

𝐶𝑃!,!,! Technological overlap index 
between regions 𝑖  and 𝑗 in year 
𝑡, using IPC main classes 

Own calculations on the basis of 
Cantner and Meder (2007) 

𝑆𝐷!,!,! Euclidean distance of regions 𝑖 
and 𝑗 in the initial position of the 
model  

Own calculations based on MDS 
mapping of network data into 2 
dimensions 

 

3.3 Estimation of the gravity equation 
After determining the initial positions of the regions in the two dimensional social 
space, the next step is the estimation of the gravity model in equation (1). The data 
used for this estimation is summarized in Table 1. As described there, the data we use 
has a panel structure: the observation units are the region-pairs, on which the 
cooperation intensities (𝐶𝑂𝑂𝑃!,!,! ), the social distances (𝑆𝐷!,!,! ) and cognitive 
proximities (𝐶𝑃!,!,! ) are identified. After experimenting with different regression 
settings, the following fixed effects panel model was estimated: 
 
ln 𝐶𝑂𝑂𝑃!,!,! =
𝑎! + 𝑎! ∙ ln 𝑅𝐷!,! ∙ 𝐶𝑃!,!,! + 𝑎! ∙ ln 𝑅𝐷!,! ∙ 𝐶𝑃!,!,! + 𝑎! ∙
                                ln 𝑆𝐷!,!,! + 𝑎!,! ∙ 𝑇𝐷! + 𝑎!,!,! ∙ 𝐹𝐸!,! + 𝜀!,!,!                               (2) 
																																																								
14 See Appendix B for details on this.	
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where 𝐶𝑂𝑂𝑃!,!,! is the FP cooperation intensities between regions 𝑖 and 𝑗 in year 𝑡, 
𝑅𝐷!,! is total R&D expenditures of region i in year 𝑡, 𝐶𝑃!,!,! is cognitive proximities of 
regions 𝑖 and 𝑗 in year 𝑡 and 𝑆𝐷!,!,! is the social distance between regions 𝑖 and 𝑗 in 
year 𝑡 as a result of the MDS algorithm described in Appendix A. 𝑇𝐷! is a time 
dummy, 𝐹𝐸!,! is an observation-specific fixed effect and 𝜀!,!,! is an observation and 
time-specific error term. 
 
Table 2 – Regression results from estimating the gravity model 

Fixed-effects, using 390960 observations 
included 32580 cross-sectional units, time-series length = 

12. Dependent variable: ln 𝐶𝑂𝑂𝑃!,!,!  
Variable Coefficient p-value 
𝑎! −3.65407*** <0.0001 
𝑎! 0.0475673*** <0.0001 
𝑎! 0.0475673*** <0.0001 
𝑎! −0.300823*** <0.0001 
𝑎!,! 0.162147*** <0.0001 
𝑎!,! 0.381809*** <0.0001 
𝑎!,! 0.556079*** <0.0001 
𝑎!,! 0.69274*** <0.0001 
𝑎!,! 0.790328*** <0.0001 
𝑎!,! 0.742078*** <0.0001 
𝑎!,! 0.758434*** <0.0001 
𝑎!,! 0.654642*** <0.0001 
𝑎!,!" 0.593571*** <0.0001 
𝑎!,!! 0.508909*** <0.0001 
𝑎!,!" 0.314529*** <0.0001 

LSDV R-squared 0.876869 
P-value(F) 0.000000 

 
The results of the estimation are shown in Table 2. These results indicate that all 
parameters (including the time dummies and the fixed effects) are significant and they 
show the expected signs: R&D has a positive impact on cooperation in interaction 
with cognitive proximity, whereas social distance has a negative impact. Time 
dummies are positive and show an inverted U-shaped pattern: cooperation intensities 
on average increase up to the sixth year of the sample and decrease after that.15 The 
model provides an explanatory power of 0.88, which is quite good, and means that 
even the gravity model is able to capture large part of the variation in the dependent 
variable.  

3.4 Parameter calibration 
The remaining set of parameters is calibrated in order to improve the fit of the model. 
This means altogether 5 parameters: 

• 𝑆 – the general speed of agents. This parameter reflects the overall strength of 
agents’ motivation to cooperate: higher speed means that agents are 

																																																								
15 The reference period against which these time dummies are defined is the first year of the sample. 
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characterized by a strong motivation to cooperate with others as they move 
faster towards the desired cooperation partners in the social space. 

• 𝐵𝐹 – the general strength of counter-force. This parameter reflects the average 
cost of link formation: the higher this parameter, the more reluctant agents are 
to move towards their desired partners in the social space. 

• 𝐴𝑃 – the set of most attractive partners which agents follow in the social 
space. This parameter reflects the limited cognitive capacities of agents by 
restricting the set of other agents which they are able to keep track of. 

• 𝑆𝑅 – speed heterogeneity parameter. This parameter reflects how the size of 
the agents is related to their speed. Through this parameter we can set whether 
larger agents move faster or slower and what is the strength of this 
relationship. 

• 𝐵𝑅  – counter-force heterogeneity parameter. Analogously to the speed 
heterogeneity parameter, this parameter reflects how the size of the agents is 
related to the strength of the counter-force applied to them. Through this 
parameter we can set whether larger agents face higher or lower cost of link 
formation and what is the strength of this relationship. 

Note, that although the last two parameters contribute to the heterogeneity of agent 
behavior, the parameters are still aggregate in the sense that we do not define a 
specific speed/counter-force to be calibrated for all agents, but only the relationship 
between size and speed/counter-force is established which require two parameters to 
be set for each: a shift parameter (𝑆 and 𝐵𝐹) and a slope parameter (𝑆𝑅 and 𝐵𝑅). 
 
The range of the parameters on which the optimal parameter setting is searched is 
depicted in Table 3. These ranges were selected after iterative experiments so that the 
global optimum most likely lies within this range. All parameters are continuous 
except 𝐴𝑃, which only accepts integer values by definition.  
 
 
Table 3 – Calibration ranges of parameters 

Parameter Description Range Optimal value 
𝐴𝑃 Length of agents’ partner list [1,180] 148 
𝑆 Common speed [0,0.1] 0.07 
𝐵𝐹  Common counter-force strength [0,1] 0.596 
𝑆𝑅 Speed elasticity on agent size [−1,1] -0.001 
𝐵𝑅 Counter-force strength elasticity on agent size [−1,1] -0.052 

 
These five parameters were calibrated in the following manner. Given the estimated 
gravity model parameters and the initial positions for the first year of the sample, we 
set up the model. Then, the model is shocked by the observed changes in R&D and 
cognitive proximity data between the first and second years of the sample. The shock 
sets the model in motion and arrives into a steady state where agents do not move 
further. Once the model reaches this new steady state, the pairwise attractiveness 
values (given by the shocked exogenous variables and the final positions and social 
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distances) are calculated.16 Then, we calculate the mean absolute difference between 
these pairwise attractiveness values and the observed cooperation intensities. This 
method yields an error measurement for the model in the second year of the sample. 
Then, we move on to the third year and use the same method to arrive at the error 
measurement for this year. Following this method up to the last year of the sample, 
we obtain 11 error measurements for the 11 consecutive years in the sample.17 
Finally, we simply calculate the average of these 11 error measures to capture how far 
the simulation gets on average over the years from the observed cooperation 
intensities.  
 
The parameter calibration method targets the overall error measure and tries to 
minimize it by setting the five parameters in order to get the smallest error possible. 
As the optimization problem here is quite complex, with a highly nonlinear objective 
function (the model itself run for 11 years, which means 11 times a number of periods 
long enough to reach the steady state) and one of the parameters is bounded to integer 
values, we used genetic algorithm to find the best fit of the model18. 

3.5 Calibration results 
In the previous sections we have described the method through which the model was 
fit to the data. This consists of (i) setting up initial positions, (ii) estimating the gravity 
model and (iii) calibrating the remaining model parameters. Table 2 shows the 
estimated parameters of the gravity model and the last column in Table 3 shows the 
final, optimized parameters, which were calibrated. The AP parameter is optimized to 
148, which is a considerable amount of partners to be ‘followed’, given the maximum 
which is 180. The speed parameter does not have a clear meaning in itself. Its 
interpretation comes from the size of the space in which agents move. In the initial 
outset agents are placed in a square the sides of which are of length 2. This means that 
moving with the calibrated speed (0.07) on average agents cross 3.5% of the space in 
one step/period of the simulation. The optimal value of the counter-force parameter is 
close to 0.6, which means that the cost of link formation is not that high, it could be 
qualified as intermediate.19 The two heterogeneity parameters are set different from 
zero which indicates that heterogeneity in speed and the cost of link formation is an 
important factor in the model, improving the fit of the model once taken into account. 
Both values are negative which shows that larger regions tend to move more slowly 
(their motivation to find new collaborations is lower, which is a reasonable conclusion 
as their inherent innovation capabilities are abundant an external sources of 
knowledge are less required) and tend to have lower counter-forces (their cost of 
forming links is lower which is a reasonable finding again). 

																																																								
16 Convergence is assumed when the percentage change in the mean pairwise social distance (from the 
start of the simulation to the current period) remains below ±0.01%. As agents may ’fluctuate’ around 
their steady state position, we run the model for 50 periods after achieving convergence and the final 
equilibrium positions and attraction values after the shock is calculated as the average over these 50 
overrun periods. 
17 As the fitting method operates on the basis how the simulation model can approach the observed 
networks after a shock, we cannot fit the model to the first year as it serves as the starting point for the 
process. 
18 Appendix C provides more information about the genetic algorithm we used.  
19 It is important to note here that by setting the counter-force parameter below unity the stationary 
nature of the model does not disappear, only agents need more time to arrive into a new steady state 
and move farther from their initial positions. Even if this parameter is zero, the model keeps 
stationarity, but in this case agents collapse into the mass center of the system.  
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Figure 1 – Improvement in the absolute performance of different model settings 

Figure 1 focuses on the absolute errors and improvements in model fit. It is visible 
that even the gravity model produces a reasonable fit: the average error is less than 1, 
which – recalling that the unit of the fit measurement is the number of joint FP 
projects between regions – is very small. However, in the case of large collaboration20 
intensities, the gravity model makes a much larger error. This error is reduced from 
more than 6 to less than 4 if we augment the gravity model with further agent based 
elements. Overall, the estimated gravity model provides a good fit to the data, but the 
calibrations build around this gravity model are able to further improve the fit of the 
model by a significant 35%. This improvement is even higher (reaching 44%) in the 
case of those observed collaborations, which are more intensive than the average. 
 

3.6 How the simulation model works  
In this section we give a brief summary of the agent-based model. In Figure 2 we 
show the basic logic of the model. The red boxes on the right represent the data, 
which is used for the model. This data determine the exogenous variables, which are 
the R&D intensities of agents and their cognitive proximities as well as their initial 
positions, which are derived from observed network distances. The initial positions of 
the model represent the location of the agents in the social space and their social 
distance. The R&D intensities, the cognitive proximities and the social distances 
determine the attractiveness values through the gravity equation in (2). Once a shock 
hits the model thorough some of the exogenous variables, agents are set in motion. 
Attractiveness changes leading to the motion of agents, which feeds back into the 
social distances through changing positions. Changing social distances again affect 
attractiveness, and the model keeps ‘moving’ for a while even in the absence of 

																																																								
20 Large observation means higher than the average collaboration intensity over the whole sample. The 
average collaboration intensity is 2.45, which means roughly two and a half joint projects between 
regions.	
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further shocks. However, the model proves to be stationary, so after a one-time shock, 
motion settles down and agents reach a new steady state position.21 
 

 
Figure 2 – The schematic setup of the agent based model 

4. Network policy simulations 
In this section we provide a brief discussion of some illustrative simulation exercises 
executed with the calibrated model. First, we carry out a policy optimization and then 
we implement a more complex study where this model is integrated into the GMR 
policy impact-modeling framework. 

4.1 Policy optimization with the model 
The model can be used to set out optimal policies with respect to network formation. 
In the following example we raise the question that what are the directions to which a 
given region should specialize in order to improve its network embeddedness. By 
specializing on a given technological field, a region can selectively improve 
cognitive/technological proximity with several other regions while decreasing it 
towards others.  
 
On the basis of this, our exercise builds on shocking the cognitive proximity of one 
region with a selected other region in a positive way. Then, we check the resulting 
change in network structures and measure the change in network embeddedness as a 
result of the shock. Network embeddedness in this exercise is measured by the Ego 
Network Quality index, developed by Sebestyén and Varga (2013a, 2013b). This 
index measures the quality of knowledge accessible from a given network position by 
taking into account (i) the connectivity of the direct and indirect partners of a given 
agent and (ii) the knowledge possessed by these partners. 
 
The simulation setting is the following. We choose Central Hungary, the capital 
region of Hungary, as the region of interest. This region is the most developed one in 
Hungary, with quite many cooperation with other regions and relatively developed 

																																																								
21 Appendix D provides the technicalities behind the motion of agents in the social space. 
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industries. Then, we consecutively shock the cognitive proximity of Central Hungary 
with all other regions in our sample, and run the simulation for 10 years after the 
shock. The goal is to pick the region with which the increase in 
cognitive/technological similarity brings about the largest improvement in the ENQ 
index (network embeddedness). 
 
Figure 3 shows how the ENQ index changes after a 1% shock to cognitive proximities 
with all the other regions. The black line shows the baseline case, when there is no 
shock at all. All colored lines represent the time path of the ENQ index after the shock 
with a given region. It can be seen that the paths are very similar, they move around 
the baseline, some moving above, some moving below it.  

 
Figure 3 –Dynamics of the ENQ index after a shock to cognitive proximity with 
all other regions. 

The task is to pick the line, which corresponds to the largest increase in ENQ. It can 
be hypothesized that the most benefit with respect to network position comes if those 
connections/partners are supported, which are relatively large. In other terms, one 
may argue that the target of support must be to form links with large, important 
regions/partners or, to further improve already existing collaboration linkages. We 
checked whether this kind of tendency is valid in the light of the simulation exercises. 
As a result of the simulation, we calculated the change in the ENQ index when 
Central Hungary’s cognitive proximity is increased with all other possible regions in 
turn. Now, we examine if the resulting changes in the ENQ index correlates with the 
size of the partner or the size of the existing collaboration. 
 
Figure 4 shows the scatter plots of the corresponding analysis. The panel on the left 
hand side shows the correlation between the change in the ENQ index (vertical axis), 
and the size of the partner region (horizontal axis) with which the shock is 
implemented. The right hand side panel shows the correlation between the change in 
the ENQ index (vertical axis) and the size of connection (horizontal axis), which is 
shocked. The main conclusion from the diagrams is that there is no correlation 
between either the size of the partners or the size of the already existing connection 
and the change in the ENQ as a result of a shock to the cognitive proximity of Central 
Hungary with other regions.  
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Figure 4 – Correlation of ENQ change with partner sizes and existing 
collaboration intensities 
 
There is a clear policy implication from this: policies supporting network formation 
should not be rule-based in the sense that it supports link formation with large, central 
regions or strengthen already existing relationships. In contrast, they should be 
selective and individually designed support programs, tailored to the specific 
endowments and characteristics of the region in question. The role of impact 
modeling is therefore inevitable in this case – our model presented in this paper may 
be a candidate to fulfill this role.  
 
Table 4 – The 10 best options for Central Hungary to increase cognitive 
proximities with 

Cumulated change in ENQ 
1 Oberbayern DE21 2.10% 
2 Koblenz DEB1 1.56% 
3 Eesti EE 1.47% 
4 Basse-Normandie FR25 1.43% 
5 Burgenland (A) AT11 1.38% 
6 Dolnoslaskie PL51 1.29% 
7 Andalucía ES61 1.26% 
8 Itä-Suomi FI13 1.20% 
9 Tübingen DE14 1.13% 

10 Praha CZ01 1.09% 
Table 4 shows the 10 best partners with respect to the overall (cumulated) change in 
ENQ. The best partner to increase cognitive proximity with is Oberbayern in 
Germany, which is a reasonable result having in mind that this region is a center of 
German automotive industry and the Hungarian economy is tightly linked to the 
German economy on one hand and to its automotive industry on the other.  
	
4.2 Economic impact modeling 
In the previous section we have shown an illustrative simulation in order to underline 
the capabilities of the model. In this section we briefly present the results of a 
simulation where the innovation network model is used as an input to a regional-level 
economic impact model. 
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The model framework we use is the GMR-Europe model, which is a large-scale 
macroeconomic-regional model for European regions for the purposes of impact 
analysis for innovation policy. The model is built around standard economic modeling 
tools and is capable of reflecting the economic outcomes (changes in GDP, 
employment, prices, etc.) of different innovation policy interventions both at the 
regional and at the macroeconomic level. An inherent feature of the model is its 
detailed productivity block. This is the point where changes in the interregional 
knowledge network are built in the model affecting regional productivity in a 
complex way. The two models, the agent based knowledge network formation model 
and the GMR economic policy impact model is linked together through the ENQ 
index. By simulating expected changes in the structure of the knowledge network the 
AB model provides relative ENQ impacts over the simulation period which then go 
into the GMR model’s productivity block initiating widespread economic impacts 
across the regions in the model. For a more detailed description on the GMR 
modeling framework and the GMR-Europe model the reader is directed to Varga et 
al. (2015).  
 

 
Figure 5 – The impact of increased cognitive proximity between Central 
Hungary and Obarbayern on Gross Value Added   
 
Figure 5 shows the results of a simulation run with the GMR-Europe model where we 
used the results from the optimization exercise in section 5.1. The cognitive proximity 
of Central Hungary is increased with Oberbayern by 1%, which then leads to changes 
in the structure of the knowledge network across the regions in our sample. The 
resulting change in the ENQ index then sets in motion the productivity block in the 
GMR model, modifying productivities in the sample regions (predominantly in 
Central Hungary and Oberbayern), which then brings around different economic 
changes (increasing or decreasing employment, prices, production) all over the 
landscape. The figure shows how the Gross Value Added in Central Hungary and in 
Hungary as a whole changes as a result from the shock given to cognitive proximity. 
Over the ten years of the simulation there is a slight positive impact both for the 
region and the country, the latter being somewhat smaller. 
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The improvement in the network embeddedness (ENQ index) of Central Hungary has 
a positive impact on its productivity and as a result, brings about a positive change in 
the economic output of the region. Moreover, this positive effect spills over to 
Hungary as a whole through two channels. First, through an improvement of other 
regions’ network position (which is a result from the complex dynamics in the 
network formation model) and second through dynamic economic interactions 
between regions such as trade and migration of production factors. The great power of 
the two models linked together is that it is capable to quantify the likely effects of 
such interventions and as a result, render them suitable for policy impact analysis in 
the field of innovation policies where ‘soft’ factors like knowledge, research 
cooperation and alike are of utmost importance.  
 
5. Conclusions 
Targeting interregional knowledge networks has become an important tool in 
innovation policy which is backed by findings in the literature showing how lagging 
regions can benefit from cooperation with leading innovation centers. In this paper we 
have set out a modeling framework, which targets capturing the dynamics of link 
formation in a knowledge network while it is simple enough to be integrated into a 
broader economic impact analysis model and also empirically tractable in the sense 
that the model can be brought to the data easily concerning data requirements and 
complexity. 
 
The model is built around a standard gravity model, which captures a static 
relationship between connection intensities and agent sizes as well as distances in 
several dimensions. Then, this gravity model is augmented with some dynamic 
elements, which move agents in the social space according to attraction forces 
governed by the gravity model. Agents’ motion in this social space is then translated 
into changing link formation probabilities and as a result a changing setup of the 
knowledge network structure.  
 
The paper shows the calibration method of the model and argues that augmenting the 
standard gravity model with some elements of complex dynamics can improve the 
empirical properties of the model reducing fitting errors. This improvement is proved 
to be larger in the case of those connections, which are “large” in the sense that lay at 
the fat tail of a highly asymmetric distribution. This means that the augmented gravity 
model is not only able to capture average tendencies in the sample used to fit the 
model but it reflects even more precisely the dynamics of link formation in the case of 
the most important agents which is a significant result as these agents constitute the 
backbone of the network and their interconnectedness determine the overall structure 
and performance of the knowledge network to a large extent. 
 
Finally we have shown a simple illustrative simulation where the calibrated model 
was used to run an optimization experiment: we calculated that in the case of Central 
Hungary (capital region of Hungary) which possible partner region yields the highest 
change in network embeddedness in terms of the Ego Network Quality index. Then, 
the results of this simulation were integrated in a broader economic impact model, the 
GMR-Europe model, which showed how the wider economic impacts on the regional 
and macroeconomic levels can be traced with the help of our model setting. Also, 
these simulations have shown that we cannot find significant relationship between the 
change in the improvement in network position and the size of or the former 
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connection intensity of possible partners. This means that there is no general receipt 
for innovation policies targeting network formation but policy needs to conduct a 
careful analysis of possible impacts in the case of every region. The help of policy 
impact models is thus proved to be inevitable.  
 
Although the proposed modeling framework seems promising, there are several 
limitations and avenues for further development in this field. First, the simulation 
exercise showed here aggregated agent behavior to the regional level. Although there 
may be some justification for this, the basic principles of agent based modeling is 
built on the assumption that the disaggregation level of these models must be as close 
to the real decision making units as possible. On the other hand, the model framework 
is easily applied in a context where agents are institutions (firms, universities, etc.) or 
even individuals. Without any modification to the model structure, the data 
background must be richer in this case. Second, the choice of the dimensionality in 
the case of the social space is arbitrary in this case (we used a 2D representation as it 
provides a simple, intuitive and easily visualized interpretation of agent motion). 
However, this reduction in dimensionality may result in some unintended results with 
respect to agent motion and link formation dynamics as it restricts agents’ abilities to 
significantly differentiate their link formation strategies towards other agents. 
Currently we are working on increasing the dimensionality of the model and 
searching for an optimal choice in this respect, but this process is severely limited by 
computational capacities raising some technical issues to be resolved in the near 
future. 
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APPENDIX A: Heterogeneity parameters 
The model is equipped with agent-specific speed parameters. In order to avoid 
overwhelming the calibration process with many separate parameters to be 
determined, agent speed is linked to agent size, which is exogenously given. The 
number of parameters to be calibrated is crucially lower this way and independent of 
the number of agents. Let us denote the size of agent 𝑖 by 𝑊!, which is centered on 1. 
Then the agent-specific speed is defined as: 

𝑆! = 𝑆 − 𝑆𝑅 + 𝑆𝑅 ∙𝑊! 
where 𝑆 is a common constant defining the average speed of agents and 𝑆𝑅 is a 
parameter defining roughly the elasticity of agent speed upon its size. It is easy to see 
that if 𝑆𝑅 = 0 then 𝑆! = 𝑆 so that agent speed is homogenous and corresponds to the 
common factor 𝑆. If 𝑆𝑅 is different from zero then the agent with the average size 
(𝑊! = 1) moves at speed 𝑆, whereas other agents move faster or more slowly. If 
𝑆𝑅 > 0, then larger agents move faster, if 𝑆𝑅 < 0, then larger agents move more 
slowly. Note, that the agent-specific parameter 𝑆! is static, so that it is not recalculated 
in each period of the model. As a result of this method, only two parameters have to 
be calibrated (𝑆 and 𝑆𝑅) instead of a separate speed parameter all agents. 
 
We define the agent-specific counter-force strengths in an analogous way: 

𝐵𝐹𝑃! = 𝐵𝐹 − 𝐵𝑅 + 𝐵𝑅 ∙𝑊! 
where 𝐵𝐹 is a common constant defining the average counter-force strength of agents 
and 𝐵𝑅 is a parameter defining the elasticity of counter-force  strength upon agent 
size. It is easy to see that if 𝐵𝑅 = 0 then 𝐵𝐹𝑃! = 𝐵𝐹 so that counter-force strength is 
homogenous and corresponds to the common factor 𝐵𝐹. If 𝐵𝑅 is different from zero 
then the agent with the average size (𝑊! = 1) has counter-force strength 𝐵𝐹, whereas 
other agents have higher or lower strength. If 𝐵𝑅 > 0, then counter-force is stronger 
for larger agents, if 𝐵𝑅 < 0, then counter-force is stronger for smaller agents. 𝐵𝐹𝑃! is 
also static in the model. Again, only two parameters have to be calibrated (𝐵𝐹 and 
𝐵𝑅) instead of a separate counter-force parameter all agents. 
 
APPENDIX B: Deriving initial positions 
An important element of our model is that the concept of network distances (pairwise 
distances of agents in the network on the basis of direct and indirect links and their 
weights) is scaled down to a 2 dimensional space. Put it differently, in order for the 
model to be useful, we need the 2 dimensional mapping of the agents represent 
network distances as close as possible. There are several ways to visualize networks 
in two dimensions, and most of these methods build on some similarity/dissimilarity 
measure between agents and try to define coordinates for the agents so that their 
distance in the two dimensional space fits with their dissimilarities. The most widely 
used method is MDS (Multidimensional Scaling), which defines a stress function 
between the dissimilarity measures and the Euclidean distances in the target space and 
then this stress function is minimized to achieve the best fit. The method can be used 
to reduce the dimensionality of any data to an arbitrary level, but for reasons of 
visualization the two-dimensional representation is the most common. 
 
In our context, we also use MDS to arrive at the initial positions of agents in the 
model. The starting point is the Framework Program collaboration matrices, which 
determine a weighted network on the sample of regions. Then, we calculate network 
distances using this weighted network links, which defines a distance between any 
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two pairs of regions. These distances serve as the dissimilarity inputs to the MDS. 
The stress function is simply the sum of squared differences between the pairwise 
network distances (observed) and the Euclidean distances in the two dimensional 
space. Minimizing this stress function yield the coordinates for the regions which 
represent quite well the original observed network distances. 
 
Figure A.1 below represents the achieved fit of the initial positions through MDS. The 
picture only shows the data for 2012, but qualitatively similar pictures emerge for all 
other years. It is clear that there is a strong positive correlation between the observed 
network distances and the Euclidean distances calculated from the agent positions 
after the MDS. However, the method is biased, as the Euclidean distances tend to be 
larger than the observed network distances but never smaller. 

 
Figure A.1 – The result of MDS: correlation between observed network distances 

and Euclidean distances in the two dimensions after MDS, for 2012 data 

 
In the sample there are several regions (and possibly different regions in different 
years), which are isolated. As their distance from others is infinity, MDS cannot 
handle them. In order to keep these regions in the sample we assumed that their 
distance from all other regions equal the largest observed distance in the given year. 
 
APPENDIX C: The genetic algorithm 
We apply a genetic algorithm to calibrate model parameters. This algorithm starts 
from a random population of the model parameters, i.e. a set of population members 
each of them is described by a random 5 element vector of the model parameters. 
Then, in each step the algorithm generates a new population of parameter values, 
based on the following principles: 

• The fitness of each element in the population is calculated according to the 
objective function. 

• The best performing elements are selected as parents. 
• Worst performing elements are selected as elite and passed to the next step. 
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• Parents create children by mutation (random changes to elements in the 
parameter vector of the parent) or crossover (combining the elements in the 
parameter vector of the pair of parents). 

• The population is replaced by the elite and the children from the current 
population. 

The process continues until the characteristics of the population members converge to 
a sufficient level. The process was checked for robustness with different random 
initial populations. These tests showed that irrespective of the initial setting, the 
algorithm converges to the same optimal solution, which thus proves to be a global 
optimum. See for example Goldberg (1989), or Conn et al. (1991, 1997) for more 
details. 
 
APPENDIX D: Agent motion 
The basic principle of agent motion consists of two elements. First, the direction of 
agent motion is determined by the interplay between attraction- and counter-forces 
(i.e. their vector sum). Second, given this direction of motion, agents move according 
to a constant, possibly idiosyncratic speed parameter 𝑆!. 
 
Now assume that the position of agent 𝑖 at the outset is  (𝑥!,!! , 𝑥!,!! ). These coordinates 
yield the pairwise social distances 𝑆𝐷!,!,!. Given the exogenous variables 𝑅𝐷! and 
𝐶𝑃!, together with the parameters 𝑎!, 𝑎!, 𝑎! and 𝑎! in equation (2) we can determine 
the initial attraction values 𝐴!,!,! according to equation (1). On the basis of these 
attraction values, we can determine the desired position of each agent as follows: 
 

𝑦!,!! =
𝐴!,!,!
𝐴!,!,!!

∙ 𝑥!,!!
!

 

 (B1) 
where 𝑧 ∈ (1,2). Here, the pair (𝑦!,!! ,𝑦!,!! ) describes the position where agent 𝑖 would 
like to arrive, so this is the direction of the attraction force. In the next step, we 
calculate the counter-force position, given this attraction force: 
 

𝑏!! = 2 ∙ 𝑥!,!! − 𝑦!,!!  
 (B2) 
where 𝑧 ∈ (1,2). It is easy to see that this formulation provides a point in space which 
pins down a vector exactly in the opposite direction as the desired position. In other 
terms, both points (𝑦!,!! ,𝑦!,!! )  and (𝑏!!, 𝑏!!)  lie at the same distance from point 
(𝑥!,!! , 𝑥!,!! ), but exactly in opposite directions. Now define the agents’ target position, 
taking into account both the attraction and counter-forces as 
 

𝑙!,!! = 𝑥!,!! + 𝑦!,!! − 𝑥!,!! + 𝐵𝐹𝑃! ∙ (𝑏!! − 𝑥!,!! ) 
 (B3) 
where 𝑧 ∈ (1,2). This equation states that the target location is basically the vector 
sum of attraction and counter-forces. One can see that given (B2) and assuming 
𝐵𝐹𝑃! = 1 we have 𝑙!,!! = 𝑥!,!!  so that the counter-force  calibration in (B2) and the 
target position in (B3) really mean imply that without shocks to the model agents 
remain in their initial positions. The possibly idiosyncratic parameter 𝐵𝐹𝑃! lies in the 
interval between 0 and 1, and allows to set the strength of the bacfkorce in the model. 
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If 𝐵𝐹𝑃! = 1, then counter-force is of full strength, if 𝐵𝐹𝑃! = 0, then it does not play a 
role at all. If 𝐵𝐹𝑃! < 1 then agents move even in the absence of shocks. 
 
Now assume that in period 1 there is a shock to the model. This changes the attraction 
values and provides a new desired position analogously to equation (B1). Together 
with the counter-force, the direction of motion is determined as the vector sum of the 
desired position and the counter-force position, adjusted with parameter 𝐵𝐹𝑃! as in 
(B3). Now, as attraction values have changed (𝐴!,!,! ≠ 𝐴!,!,!), desired positions 𝑦!,!!  
have also changed and 𝑙!,!! ≠ 𝑥!,!! = 𝑥!,!! . As a consequence, agents start to move. 
Their movement is given by the direction (𝑙!,!! , 𝑙!,!! ) , together with a possibly 
idiosyncratic speed parameter  𝑆!. Given the direction (target position) in (B3), the 
final positions of agents are given by: 
 

𝑥!,!! = 𝑥!,!! +
𝑆!
𝐿!,!

𝑙!,!! − 𝑥!,!!  

 (B4) 
 

where 𝐿!,! = 𝑙!,!! − 𝑥!,!!
! + 𝑙!,!! − 𝑥!,!!

!
 is the Euclidean distance between the 

current position and the target position of agent 𝑖 . The intuition behind this 
formulation is that agents do not jump directly to their target position, but only 
proceed towards this position. The distance they move is determined by their speed 𝑆! 
which gives a fixed distance in the social space and each agent moves across this 
distance in one model step – given that the forces of the model require them to move. 
 
Once agents arrive to their new positions (𝑥!,!! , 𝑥!,!! ), their social distances (𝑆𝐷!,!,!) 
change, which has an effect on the pairwise attraction values (𝐴!,!,!). This generates 
new desired positions and new target positions together with the counter-force and 
agents move again. The same logic can be iterated until the model reaches its new 
steady state after the shock. 
 
In sum, we can write the following general laws for the motion of agent between any 
two time periods. The desired positions are: 
 

𝑦!,!!!! =
𝐴!,!,!
𝐴!,!,!!

∙ 𝑥!,!!
!

 

 (B5) 
 
The target positions are: 

𝑙!,!!!! = 𝑥!,!! + 𝑦!,!!!! − 𝑥!,!! + 𝐵𝐹𝑃! ∙ (𝑏!! − 𝑥!,!! ) 
 (B6) 
 
And finally, the actual positions are: 

𝑥!,!!!! = 𝑥!,!! +
𝑆!

𝐿!,!!!
𝑙!,!!!! − 𝑥!,!!  

 (B7) 
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with the appropriate modification to 𝐿!,!!!. Note, however, that equation (B2) with 
the determination of the counter-force is not put into this general setting as the 
counter-force is calculated only once, in the initial position. In all subsequent periods 
these values are used. 
 
 
 


