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1. Introduction 
In this paper we provide a methodology to assign monetary values to the different pillars of the 

Regional Entrepreneurship Development Index (REDI). This index can be used to describe the 

general stance of the entrepreneurial ecosystem of regions, based on proxies which measure 

different aspects/dimensions of the ecosystem. The REDI methodology provides a normalized value 

to describe the entrepreneurial ecosystem using natural units of the different measures as inputs to 

the calculation. To conduct policy modelling, one needs to link monetary values to the different 

pillars/dimensions. This paper presents a method to monetize the pillars of the REDI calculation. 

The method we provide borrows from standard shadow pricing which is a widely used approach to 

assign monetary values to factors which do not have a determined market price. In principle this 

approach calculates the marginal contribution of a given resource to the outcome/objective of 

some optimization problem. If the optimization targets a monetary value such as cost or 

profit/payoff, the standard method is straightforward to be used. In the present setup, however, 

the REDI methodology starts from natural units for pillars and results in a normalized score which 

still does not have a monetary dimension. 

Following from the challenge described above, we proceed in two steps. First, using econometric 

techniques, we assign a monetary value to the REDI scores. By entering the REDI scores into a 

production function explaining regional GDP levels, we are able to estimate the marginal 

contribution of the REDI to monetarized regional output. This can be taken as the marginal value of 

the REDI in a given region. Then, we turn to the standard principles of shadow pricing where this 

monetarized REDI score is traced back to its components thus allowing for a monetarization of the 

pillars behind the REDI. 

In what follows, we first describe the data, then turn to the estimation procedure and results. After 

that, the shadow pricing method is described, followed by a summary of the paper. 



2. Data description 

2.1. Units of observation 
The unit of analysis is the region. Originally our cross-section analysis consisted of 125 “mixed” 

NUTS regions because the REDI has been calculated for 24 countries which altogether contain a mix 

of 125 NUTS1 and NUTS2 regions.  

It was possible to create the REDI for 24 countries in the European Union, except Bulgaria, Cyprus, 

Luxemburg, and Malta. In the case of 10 countries, REDI data were calculated at NUTS1 level 

(Austria, Belgium, Greece, France, Germany, Italy, Netherlands, Poland, Romania, and the United 

Kingdom). For four additional countries, only country level classification was possible. These are the 

Czech Republic, Latvia, Lithuania, and Estonia. For the remaining 10 countries, REDI were calculated 

at NUTS2 level (Croatia, Denmark, Finland, Hungary, Ireland, Portugal, Spain, Slovenia, Slovakia, and 

Sweden). In the case of Portugal, only those five NUTS2 level data were available which belong to 

the Continente NUTS1 region. For Spain, the two small African continent NUTS1 regions, Ceuta and 

Melilla were also excluded.  

First, we conducted the regression analysis alone for the 125 NUTS regions. However, it was 

problematic that in the case of 28 regions (5 Danish NUTS2, 12 British NUTS1, 2 Croatian NUTS2, 8 

Swedish NUTS2, and 1 Spanish NUTS2) capital stock data were missing. Since the exclusion of the 

listed regions would have resulted in a significant loss of data (22.4% of the dataset), we decided to 

calculate them. Finally, it was not possible to calculate capital stock data for three NUTS2 regions 

(for the Croatian HR03 and HR04, and the Spanish ES70). Thus, the final database included 

information for a mix of 122 EU NUTS regions. Note that the representativeness of the sample is 

ensured insofar as it includes 24 European countries (Table 1).  

However, due to inconsistent regression results, a further modification of the sample was required. 

The analysis of the regression results highlighted that the low sample size, and on the other hand 

the low variability in some variables that cause serious problems.  Consequently, we are required to 

(1) collect all NUTS2 level data for the 24 countries (consequently the sample size has increased to 

a total of 254), and additionally (2) pool data for the determined two years(2011, 2014), whereby 

we were able to achieve a satisfactory sample size (n=508). 

So far the REDI has been calculated for two time periods: (1) the REDI 2013 for 2007-2011 and the 

REDI 2017 for 2012-2014. Thus, as regards other variables of the cross-sectional analysis, we 

collected data for 2011 and 2014 (i.e. for the last year of the two periods for which the REDI has 

been calculated). 

Table 1. - Number of REDI regions by country 

Country 
Basic 
Class. 

No. of 
regions 

(in REDI) 

No. of 
NUTS2 
regions 

AT Austria NUTS1 3 9 

BE Belgium NUTS1 3 11 

HR Croatia NUTS2 3 no data 
CZ Czech Republic NUTS1 1 8 

DK Denmark NUTS2 5 5 

EE Estonia NUTS2 1  1 

FI Finland NUTS2 5 4 

FR France NUTS1 8 22 

DE Germany NUTS1 16 38 



EL Greece NUTS1 4  13 

HU Hungary NUTS2 7 7 

IE Ireland NUTS2 2  2 

IT Italy NUTS1 5 21 

LV Latvia NUTS2 1 1 
LT Lithuania NUTS2 1 1 

NL Netherlands NUTS1 4 12 

PL Poland NUTS1 6  16 

PT Portugal NUTS2 3 5 

RO Romania NUTS1 4 8 

SK Slovak Republic NUTS2 4 4 

SI Slovenia NUTS2 2 2 
ES Spain NUTS2 17 16 

SE Sweden NUTS2 8  8 

UK United Kingdom NUTS1 12 40 

Total  125 254 

 

2.2 Dependent variable 
This study measures territorial performance via gross domestic products (GDP). In the regression 

model, we used GDP at current prices (million purchasing power standards, PPS) per capita data. 

We collected the GDP data for 2011 and 2014 (i.e. for the last year of the two periods for which the 

REDI has been calculated). 

Table 2. –  Dependent variable 

Code Description 

GDP_PPS_2011_perCap GDP 2011 (million purchasing power standards, PPS) 

GDP_PPS_2014_perCap GDP 2014 (million purchasing power standards, PPS) 

    Note: 
* “The purchasing power standard, abbreviated as PPS, is an artificial currency unit. Theoretically, one PPS can 

buy the same amount of goods and services in each country.” (Eurostat). 

 

2.3 Independent variables 
The explanatory variables used in this study come from two sources. First, regional figures related 

to employment (L) and population density (DENSITY) were obtained from Eurostat. Also, capital 

stock (K) data were derived from Eurostat’s gross fixed capital formation data and calculated by 

using the PIM method1. Second, the variable measuring the quality of the entrepreneurial 

ecosystem across European regions is the Regional Entrepreneurship and Development Index 

(REDI). The first version of the REDI index based on the 2007-2011 GEM APS dataset was created by 

Szerb et al (2013), and with the support of the European Union (‘Financial and Institutional Reforms 

to build an Entrepreneurial Society’ (FIRES), Horizon 2020 project), the latest REDI scores with an 

additional extended time period 2012-2014 data were created with the objective of scrutinizing 

and understanding the entrepreneurial ecosystem in Europe (Szerb et al., 2017). REDI can range 

from the potential values of 0 to 100. The higher the regional REDI score, the better the quality of 

the entrepreneurial ecosystem is.  

                                                             
1 “The perpetual inventory method (PIM) is a method of constructing estimates of capital stock and consumption of fixed 
capital from time series of gross fixed capital formation. It allows an estimate to be made of the stock of fixed assets in 
existence and in the hands of producers which is generally based on estimating how many of the fixed assets installed as 
a result of gross fixed capital formation undertaken in previous years have survived to the current period.” (OECD, 2001). 



Table 3. – Description of independent variables 

Code Indicator Unit Source 
L Employment thousand, from 15 to 64 years Eurostat 

K Capital stock thousand PPP, 2000=100 own cal.* 

REDI Regional Entrepreneurship and Development Index composite index own cal. 

Control variables 

DENSITY Population density Inhabitants per square kilometer Eurostat 

CAPITAL Capital city [0; 1], it take the value of 1 for capital city  Eurostat 

Note: *It is calculated from gross fixed capital formation data (million €) using PIM method.   
 

Table 4. – List of the independent variables 

Code Description 

L_2011_perCap EMPLOYMENT (2011, thousand) 

L_2014_perCap EMPLOYMENT (2014, thousand) 

K_2011_perCap CAPITAL STOCK (2011; thousand) 

K_2013_perCap CAPITAL STOCK (2013; thousand) 
REDIunit2013_perCap REDI score (unit) 2013 

REDIunit2017_perCap REDI score (unit) 2017 

DENSITY_2011 Density 2011 

DENSITY_2014 Density 2014 

CAPITAL Capital city (dummy) 

Note:  
REDI2013, REDI2017: the super-index REDI is simply the arithmetic 

average of the three sub-indices: REDIi =
1

3
(ATTi +  ABTi + ASPi) 

where i = 1, 2, …, n is the number of regions.2  
REDIunit2013, REDIunit2017: in this case, the super-index REDI is 
calculated as the sum of the 14 penalized pillar scores. 

 

Also in the case of the independent variables, we collected the data for 2011 and 2014 (i.e. for the 

last year of the two periods for which the REDI has been calculated). All input variables are 

population standardized per 1,000 residents. 

In the different model specifications, we included two control variables related to urbanization. 

Urbanization economies are a type of agglomeration externality that refers to considerable cost 

savings generated through the locating together of people, firms, and organizations across different 

industries (Parr 2002; McCann 2013). Therefore location in large or densely populated cities may 

offer serious advantages. In our study, we follow the practice by Meliciani and Savona (2015) and 

assess the role of urbanization by introducing regional population density (DENSITY) and a dummy 

for regions with a capital city (CAPITAL). 

3. The econometric model 
The following general multiple linear regression models was tested in order to estimate the effect 

of the entrepreneurial ecosystem on territorial performance. The regression analysis departs from a 

model that includes the basic factors (labor and capital) of a simple production function completed 

with the REDI which reflects the interaction between individuals and their contexts that determines 

                                                             
2 For additional information on the calculation of REDI see:  
http://www.projectfires.eu/wp-content/uploads/2017/07/FINAL-D4.4-Template-Report-Pan-European-
database_V4.4.pdf 

 



the weights of economic and societal benefits of entrepreneurship (Audretsch and Belitski, 2017). 

The econometric model used in this study has the following forms: 

LnGDP_PPS_perCapi = β0 + β1LnL_perCapi + β2LnK_perCapi + β3LnREDIunit_perCapi+ β4LnDENSITYi+β5CAPITALi+ εi

 (1) 

where i = 1, 2, …, n is the number of regions 

In equations (1) performance refers to the GDP at the regional level, i are parameter estimates 

estimated for the independent variables, and  is the normally distributed error term that varies 

across regions.  

Table 8 shows the results of regression calculation. Before the estimation of the parameters the 

necessary assumptions of linear regression were checked: 

(1) Regarding the dependent and independent variables: 

 their normal distribution 

 independence from each other/checking for multicollinearity 

(2)  Regarding the residuals: 

 normal distribution of residuals 

 the variance of the residuals/test of heteroscedasticity  

Descriptive statistics are presented in Table 5. To ensure estimation accuracy we first have checked 

the skewness of the variables. The skewness statistic indicates how symmetrically distributed is a 

set of observed values (Greene, 2003). In the case of seven variables the absolute value of 

skewness – a measure of the asymmetry of distribution – exceeds the absolute value 2.   

For dealing with skewed data and in order to make data conform more closely to the normal 

distribution we applied the log transformation method. Table 6 contains the descriptive statistics of 

the variables after applying the above-mentioned transformation method. 

Table 5. – Descriptive statistics 

  

N Minimum Maximum Mean Std. Deviation Skewness Kurtosis 

Statistic Statistic Statistic Statistic Statistic Statistic 
Std. 

Error Statistic 
Std. 

Error 

GDP_PPS_perCap 508 7.46878 169.61111 26.4997376 12.14122038 5.466 .108 56.831 .216 

REDIunit_perCap 508 .00044 .03869 .0052656 .00476303 2.609 .108 9.984 .216 

L_perCap 508 .19432 .62141 .4271724 .05674142 -.569 .108 .654 .216 

K_perCap 508 17.28 207.08 71.0064 25.34820 1.359 .108 4.408 .216 

DENSITY 508 3.30 10780.30 442.6335 1182.01554 6.073 .108 42.639 .216 

CAPITAL 508 0.00 1.00 .0906 .28725 2.862 .108 6.216 .216 

 

 

 

 



 

Table 6. – Descriptive statistics after log transformation 

  

N Minimum Maximum Mean 
Std. 

Deviation Skewness Kurtosis 

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error Statistic 
Std. 

Error 

LN_GPD_PPS_perCap 508 2.01 5.13 3.2070 .36304 .272 .108 2.237 .216 

LN_REDIunit_perCap 508 -7.73 -3.25 -5.5665 .81064 -.074 .108 -.123 .216 

LN_L_perCap 508 -1.64 -.48 -.8602 .14230 -1.125 .108 2.290 .216 

LN_K_perCap 508 2.85 5.33 4.2025 .35137 -.267 .108 .955 .216 

LN_DENSITY 508 1.19 9.29 5.0935 1.21384 .631 .108 1.664 .216 

CAPITAL 508 0.00 1.00 .0906 .28725 2.862 .108 6.216 .216 

 

The associated correlation matrix is presented in the Appendix (see Table A1). Predictor variables 

that are highly correlated provide little independent explanatory ability. This pattern is known as 

multicollinearity. If the absolute value of Pearson correlation is greater than 0.8, collinearity is very 

likely to exist. The condition is not fulfilled for any of the variables, therefore we can assume that 

multicollinearity is not very likely to exist. Also, collinearity diagnostics (see the tables in the 

Appendix) does not confirm multicollinearity. Several eigenvalues are higher than 0, indicating that 

the predictors are not intercorrelated, and that small changes in the data values may lead to large 

changes in the estimates of the coefficients. 

The condition indices are computed as the square roots of the ratios of the largest eigenvalue to 

each successive eigenvalue. Values greater than 15 indicate a possible problem with collinearity, 

and greater than 30, a serious problem. In our case, one of these indices are larger than 30, 

suggesting a serious problem with collinearity (CAPITAL). 

However, to evaluate the threat of multicollinearity, we computed the Variance Inflation Factor 

(VIF) for all variables. In our models, none of the VIF values exceed 10—a generally accepted rule of 

thumb for assessing collinearity—were observed. The average VIF for the finally selected model 

was 1.172 (range: 1.108-1.279). The results for this diagnostic test do not raise collinearity 

concerns. 

In order to make valid inferences from our regression, the residuals of the regression should follow 

a normal distribution. The well-known tests of normality are namely the Kolmogorov-Smirnov Test 

and the Shapiro-Wilk Test. The Shapiro-Wilk Test is more appropriate for small sample sizes (< 50 

samples). If the value of the tests is greater than 0.05, the data is normal. If it is below 0.05, the 

data significantly deviate from a normal distribution. Using GDP per capita (at current prices, PPS) 

the residuals of the regression does not show a normal distribution. 

One of the assumptions made about residuals in OLS regression is that the errors have the same 

but unknown variance. When this assumption is violated, the problem is known as 

heteroscedasticity. Applying the Breusch-Pagan-Koenker Test3 we could identify the presence of 

heteroscedasticity in our data. This test assumes that the error terms are normally distributed and 

                                                             
3 http://spsstools.net/en/syntax/syntax-index/regression-repeated-measures/breusch-pagan-amp-koenker-
test/ 



tests whether the variance of the errors from a regression is dependent on the values of the 

independent variables. Natural log transformations of variables were tried, but the 

heteroscedasticity remained. 

Table 7. – Breusch-Pagan-Koenker test for heteroscedasticity 

  Model_508 

Breusch-Pagan test for 
Heteroscedasticity (CHI-SQUARE 
df=P) 

   71.357 

Significance level of Chi-square df=P 
(H0:homoscedasticity) 

    .0000 

Koenker test for Heteroscedasticity 
(CHI-SQUARE df=P) 

   58.290 

Significance level of Chi-square df=P 
(H0:homoscedasticity) 

    .0000 

 

This means that ordinary least squares no longer produces the best linear unbiased estimators 

(BLUE). An alternative and highly appealing method of reducing the effects of heteroscedasticity on 

inference is to employ a heteroscedasticity-consistent standard error (HCSE) estimator of OLS 

parameter estimates (White, 1980; Hayes and Cia, 2007). With this approach, the regression model 

is estimated using OLSs, but an alternative method of estimating the standard errors is employed 

that does not assume homoscedasticity. 

Table 8 shows the results using the HC3 estimators4. Note that the standard errors are quite similar 

for the predictors. We can be pretty confident that there is a relationship between the explanatory 

variables (L, K, REDI and DENSITY, CAPITAL ) and GDP because the regression estimate is statistically 

different from zero, regardless of how the standard error is estimated. In sum, when 

heteroscedasticity is managed using the HC3 estimator, the partial relationship between the 

independent variables and the dependent variable is statistically significant.  

In order to calculate the shadow prices for the REDI pillars we must calculate the elasticity between 

REDI score units and regional GDP levels. For this purpose we selected model_508 with the 

estimated REDI regression coefficient: 0.0584*** (p =0,0000). 

Given this estimated elasticity between the REDI scores and GDP levels, we have a monetarized 

value for the REDI. More precisely, we are able to calculate the effect if a marginal increase in the 

REDI on the monetary value of regional output, which serves as a starting point to monetarizing the 

REDI pillars. In what follows, we show how the shadow pricing approach was implemented in this 

setting to assign monetary values to the REDI pillars. 

 

 

                                                             
4 Hayes, A. F., & Cia, L. (2007): Using heteroscedasticity-consistent standard error estimators in OLS regression: An 
introduction and software implementation. Behavior Research Methods, 39 (4), 709-722. 
http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html 
 



Table 2. – OLS Regression Analysis Estimating GDP Using Standard Error Estimates Assuming Homoscedasticity (OLSE) and 
Not Assuming Homoscedasticity (HC3) 

  Model_508 

OLSE HC3 

b SE P SE P 

Dependent variable LnGDP_PPS_perCap 

Independent variables  

Constants 1.515 .150 .000 1.5152 .0001 

Ln_K_perCap .524 .026 .000 .5235 .0000 

Ln_L_perCap .794 .069 .000 .7939 .0000 

Ln_REDIunit_perCap .058 .012 .000 .0584 .0000 

Ln_DENSITY_perCap .094 .008 .000 .0964 .0000 

CAPITAL 1.515 .031 .003 .0939 .0149 

            

F-test 248.691  143,63 

Adjusted R2 .710 

Average VIF 1.172 

Observations 508 

 

Note: Robust standard errors are in brackets. *, **, *** indicate significance at the 10%, 5% and 1%, respectively. 

  



4. Shadow pricing 
In this section we describe how we calculated shadow prices for REDI pillars. The basic concept 

behind these calculations is that using the results from the estimations described previously, we are 

able to assign monetary value to the REDI pillar units. Given the econometric framework established 

in the previous section, we have an estimation of the elasticity between REDI score units and 

regional GDP levels. Let this elasticity be 𝜀𝐺𝐷𝑃, showing the percentage change in regional GDP level 

given a 1% change in the regional REDI score unit. If 𝑌𝑖  is the GDP level in region 𝑖, then the monetary 

value of a 1% increase in regional REDI score unit is 

𝑣𝑖 =
𝜀𝐺𝐷𝑃

100
𝑌𝑖  

 (1) 

In what follows we introduce the shadow pricing logic, starting with the relevant elements of REDI 

calculation, through how optimization can be interpreted in the REDI context, to the derivation of the 

final shadow prices. 

4.1. The starting point: REDI normalized pillar values 
In this approach, we start from the REDI calculations. As described previously, the calculation of the 

REDI for all regions follows the steps below: 

1. Start from individual and institutional variables for the 14 pillars, and normalize these values 

to the 0-1 interval. 

2. Multiply the institutional and individual variables to get the raw pillar values. 

3. A 95 percentile capping ensures that extreme values do not distort the results. 

4. Capped pillar values are normalized to the 0-1 interval. 

5. Capped and normalized pillar values are transformed in a way that pillar averages across 

regions are equalized (and equal to the average values across pillars). 

6. The Penalty For Bottleneck method is applied to get penalized pillar values. 

7. Pillar values are summed up to achieve REDI score units for regions. 

In this exercise we start from step 5 above. This means that for every region 𝑖 and pillar 𝑝 we have a 

𝑦𝑖,𝑝 transformed pillar score between 0 and 1.5 

Let’s use the term �̂�𝑖 = min (𝑦𝑖,1, 𝑦𝑖,2, … , 𝑦𝑖,14) to denote the minimal pillar value in region 𝑖. Then 

the penalized pillar values are calculated as: 

ℎ𝑖,𝑝 =  �̂�𝑖 + [1 − 𝑒−(𝑦𝑖,𝑝− �̂�𝑖)] 

 (2) 

Finally the REDI score units applied in this exercise and also used in the econometric estimations is 

the sum of the penalized pillar values: 

𝑆𝑖 = ∑ ℎ𝑖,𝑝

𝑝

 

                                                             
5 The transformation procedure ensures that ∑ 𝑦𝑖,𝑝𝑖 /𝑅 = �̅� for all 𝑝 (𝑅 is the number of regions). 



 (3) 

4.2. The REDI as a maximization problem 
The method we use takea advantage of the standard shadow pricing principle, which is based on the 

following extreme value problem: 

𝑓(𝐱) → 𝑚𝑎𝑥 

𝑔(𝐱) = 𝑏 

 (4) 

where  𝐱 is a vector of control variables, 𝑓(𝐱) is the objective function, 𝑏 is some resource constraint 

and 𝑔(𝐱) is a constraint function. The problem above imposes one constraint on the optimization but 

it can be generalized to an arbitrary number of constraints. It is known from standard optimization 

theory that the shadow price with respect to the constraint 𝑏 (also known as the Lagrange multiplier 

of the constraint) reflect the change in the objective function (given an optimal allocation of 𝐱) if the 

constraint is relaxed by a unit. Given that the objective function describes a cost-minimization or 

profit maximization problem, these shadow prices associate a monetary value to the natural 

resource units which constrain the problem.  

Using the standard shadow pricing principle in our context, we must convert the REDI methodology 

into a maximization/minimization problem. Our approach, we start from the average equalized, 

normalized pillar values 𝑦𝑖,𝑝 for every region. As a result of the average equalization procedure, these 

values can be regarded as brought to a common denominator, or in other terms, reflecting the 

scores of pillar elements on a common scale. Now one maximization problem is set for every region 

𝑖. The average equalized and normalized pillar scores 𝑦𝑖,𝑝 for region 𝑖 are considered as the control 

variables, so in the general setup (5) 𝐱 = (𝑦𝑖,1, 𝑦𝑖,2, … , 𝑦𝑖,14). Also, the resource constraint is the sum 

of observed pillar values: 𝑏𝑖 = ∑ 𝑦𝑖,𝑝𝑝 . To sum up, we interpret the REDI calculation logic as follows. 

Every region possesses some 𝑏𝑖 amount of resources that can be used to enhance entrepreneurial 

activity in the region by allocating it to the different pillars of the model (entrepreneurship 

ecosystem). In this shadow pricing method, we are looking for an optimal allocation of the resources 

in a given region which does not necessarily coincide with the actual observed allocation. 

The objective function converts the equalized pillar scores into the REDI score units using the penalty 

for bottleneck principle as follows. As a result, the optimization problem for region 𝑖 is as follows: 

∑ �̂�𝑖 + [1 − 𝑒−(𝑦𝑖,𝑝− �̂�𝑖)]

𝑝

→ 𝑚𝑎𝑥 

∑ 𝑦𝑖,𝑝
𝑝

=  𝑏𝑖 

 (6) 

where �̂�𝑖 = min (𝑦𝑖,1, 𝑦𝑖,2, … , 𝑦𝑖,14) as before. 



Given the objective function in (6), it is easy to show that for any constraint 𝑏𝑖 the optimal solution is 

𝑦𝑖,𝑝 = 𝑏𝑖/14 for all 𝑝, given that there are 14 pillars. The key to this result is the symmetry of the 

pillars in the objective function and the terms containing the minimal pillar value. 

To prove this result, assume that we have an allocation which satisfies 𝑦𝑖,𝑝 = 𝑏𝑖/14 for all 𝑝. Then 

impose a reallocation so that 𝑦𝑖,𝑝 decreases by some ∆𝑏 while an 𝑦𝑖,𝑞  increase by this same amount 

so that the resource constraint is still satisfied. All other pillars are unchanged. If the initial symmetric 

allocation was not optimal, this reallocation could increase the objective function. As the latter is 

additively separable in the ℎ𝑖,𝑝 penalized pillar scores, it is sufficient to analyze the change in the 

terms corresponding to pillars 𝑝 and 𝑞. With the reallocation, the �̂�𝑖 minimum terms decreases by ∆𝑏 

as it takes the smallest pillar value. As this enters the objective function symmetrically for all pillars, 

the value of the objective function decreases by 14∆𝑏. As pillar 𝑝 (where the score decreased) 

becomes the bottleneck with the minimal value, the term in the bracket for this pillar is 0, because 

𝑦𝑖,𝑝 = �̂�𝑖. As for pillar  𝑦𝑖,𝑞 = �̂�𝑖 + 2∆𝑏, the term in the bracket for this pillar becomes 1 − 𝑒−2∆𝑏. 

Before the reallocation, the symmetric allocation rendered the terms in the bracket to 0 for all pillars, 

so it follows that the change in the allocation increases the bracketed term for pillar 𝑞, but less than 

2∆𝑏. To conclude, the reallocation decreases the objective function by 14∆𝑏 on the one hand and 

increases it by less than 2∆𝑏 on the other, so the objective function definetly decreases. It follows 

that the symmetric allocation is an optimal allocation. 

 

1. Figure – A visual representation of optimal allocation 

The logic above can be easily represented visually if we restrict the number of pillars to two. Figure 1 

shows this solution. The black lines in the figure represent isoquants of the objective function in (6) 

with two arguments 𝑦𝑖,1 and 𝑦𝑖,2. This means that along a black curve the different allocations of the 

pillars 1 and 2 yield the same REDI score unit. The closer a black curve is to the top-right corner, the 

higher the REDI score unit it represents. The blue lines represent the resource constraint given 𝑏𝑖. 



Again, the closer the blue line is to the top-right corner, the more relaxed the constraint is. Along the 

blue line, the sum of the two pillar values are the same, while its allocation on the two pillars change. 

It is easily visible in Figure 1 that due to the symmetry of the objective function the resource 

constraints hit the highest REDI score unit in the middle of the graph, under a balanced allocation of 

the resources on the two pillars. The red diagonal line shows all the optimal allocations under 

different resource constraints. The penalty for bottleneck principle ensures that in an unbalanced 

allocation one can always improve the REDI score with a reallocation towards a more balanced 

structure while the symmetry of the pillars drives the optimal allocation to perfect balance. 

4.3 Using the shadow pricing logic 
As shown in the previous section, the structure of the REDI ensures that given 𝑏𝑖 amount of 

resources in region 𝑖 which can be allocated to the different pillars, the optimal allocation is 𝑦𝑖,𝑝 =

𝑏𝑖/14 for all pillars 𝑝. Now assume a change in the resource constraint from 𝑏𝑖 to 𝑏𝑖
′. As a result, the 

optimal allocation changes to 𝑦𝑖,𝑝
′ = 𝑏𝑖

′/14 for all pillars 𝑝. Using the objective function in (6) it is 

easy to show that given the optimal allocation, the REDI score is simply 𝑆𝑖 = ∑ 𝑦𝑖,𝑝𝑝 = 𝑏𝑖.
6 So if the 

resource constraint changes, the optimal REDI score also changes to 𝑆𝑖
′ = 𝑏𝑖

′. As described in the 

previous sections, the monetary value of a percentage change in the REDI score units is 𝑣𝑖. If the 

change in the REDI score (assuming optimal resource allocation) is a result of a change in the 

resource constraint, the monetarized change in the REDI score is the shadow price of the resource. 

The shadow price of the resource is then 

𝑉𝑖 =
𝑆𝑖

′

𝑆𝑖
𝑣𝑖 

 (7) 

An important difference between this solution and the forward logic is that the latter one provides a 

different shadow price for all pillars in a given region, while the optimization method presented here 

provides one shadow price for a given region for the ‘general’ resource which is assumed to be 

allocated to the different pillars. 

Table A3 contains the results for the shadow prices obtained with the optimization method described 

above. The average value across regions is 2.381 thousand EUR, while the minimal and maximal 

values are 1.512 and 4.059 thousand EUR respectively. These values mean that if a pillar value 

(resource) changes by 1 basis point (0.01 on the 0-1 scale), per capita GDP in PPS in the region is 

expected to change by this amount. 

5. Discounting with fiscal multipliers 
The 𝑉𝑖 values calculated in (7) and sampled in Table A3 show how the GDP per capita in a region is 

expected to change for a small change in the resource constraint. These values, although having 

monetary dimension, are more of an output or result of investing resources into the entrepreneurial 

environment than being the cost of these investments. How the cost of such investments can be 

determined is not a straightforward task. 

                                                             
6 The reason for this is that under the optimal allocation bottlenecks are eliminated so the bracketed term in 
the objective function in (6) vanishes. 



Our approach in this respect is to use fiscal multipliers. As our interest is basically policy driven, we 

concentrate on policy interventions resulting in improvements in the REDI pillars, which means 

relaxing regional resource constraints in the context of the shadow pricing (optimization) setup. 

Without directly assigning monetary costs to improving specific REDI pillars, we assume that there is 

a general efficiency of such policies – these are usually expressed in the form of multipliers: spending 

1 EUR on specific purposes, what increase can be achieved in economic output/income. The merit of 

using multipliers is that such values are widely available and they provide a general/aggregate 

measure of how policy efforts turn into economic outcome. 

Given that the multiplier relevant for region 𝑖 is 𝑚𝑖 (meaning the one unit of government spending in 

region 𝑖 results in an 𝑚𝑖 unit increase in regional GDP), we can use this value to calculate backwards: 

how much spending is required in order to achieve a given amount of increase in the GDP. If the 

result of an investment in any pillar 𝑝 in region 𝑖 is 𝑉𝑖 as in (7), then the “policy cost” of achieving this 

monetary result can be expressed as 

𝑀𝑉𝑖 =
𝑉𝑖

𝑚𝑖
 

 (8) 

One challenge in determining the multipliers is that there are many of them. Multipliers typically 

differ with respect to the fiscal instrument (e.g. government consumption, different taxes, etc.), 

whether it is temporary or permanent and also the horizon of the output effect taken into account 

(e.g. short or long term effects on GDP. 

In this study we take two comprehensive sources of country-level multipliers into account: a report 

of the European Central Bank (Kilponen et al., 2015), which uses country-level DSGE models to 

estimate multipliers and the report of the OECD (Barrell et al., 2012) which uses a standardized 

econometric method for the same purpose. These reports provide country-level estimates of fiscal 

multipliers for a set of countries7 and several fiscal instruments8. The ECB report provides estimates 

for temporary and permanent interventions, but the OECD estimations are given only for temporary 

policies. 

This diversity in the reported fiscal multipliers requires a careful choice among them. First of all, our 

goal is to use as detailed data as possible, which drives the choice at the first hand to use country-

level multipliers wherever possible. A constraint in this respect is that the two reports contain 

different countries (with some overlap). In order to have the largest coverage, we take both reports 

and take the multipliers wherever the country is reported. If it is reported in both reports, the 

average of the two multipliers are used. Latvia, Lithuania, Hungary, Poland, Romania and Slovakia are 

not covered by either of the reports. As the ECB provides values for the Eurozone, these can be used 

for Euozone members within these remaining countries, while the rest is assigned an average value 

of the CEE countries. This approach also narrows down the fiscal instruments to be used – only 

government consumption is comparably provided by both reports. This instrument is in line with our 

                                                             
7 From the 23 countries covered by the REDI, 17 appears in one of the reports while 10 appears in both. 
8 The OECD report cotains government consumption, government benefits (transfers), direct and indirect taxes. 
The ECB report estimates multipliers for government consumption, labor income tax, capital income tax and 
consumption tax. 



purpose on the other hand: the fiscal instruments used to promote entrepreneurial ecosystems are 

mainly (but of course not exclusively) expenditure-side tools which are accounted for as government 

spending.9 Finally, as only the ECB report contains permanent multipliers and its long run effects, the 

primary choice of using the most diverse set of reported values for different countries narrows down 

the time span as well only to temporary interventions and short run effects.10 Finally, the standard 

way of presenting multipliers is the estimated effect of a restrictive fiscal impulse – as we are 

working with a positive, expansionary effect with more resources spent on specific purposes, we use 

the assumption that the reported multipliers are symmetric so that the same, but opposite effect is 

expected after a fiscal expansion as after a restrictive one. 

1. táblázat – Estimated multipliers for different countries in the REDI sample 

Country 
ECB 

estimation 
OECD 

estimation 
Final value 

Belgium 0,93 0,17 0,55 

Czech Republic 0,54   0,54 

Denmark   0,53 0,53 

Germany 0,52 0,48 0,50 

Estonia 0,83   0,83 

Ireland   0,33 0,33 

Greece 0,90 1,07 0,99 

Spain 0,50 0,71 0,61 

France 0,92 0,65 0,79 

Italy 0,79 0,62 0,71 

Latvia     0,98 

Litvania     0,98 

Hungary     0,68 

Netherlands 0,74 0,53 0,64 

Austria   0,53 0,53 

Poland     0,68 

Portugal 0,85 0,68 0,77 

Romania     0,68 

Slovenia 0,66   0,66 

Slovakia     0,98 

Finland 0,78 0,64 0,71 

Sweden 0,60 0,39 0,50 

United Kingdom   0,74 0,74 

Eurozone 0,98   0,98 

New members in 2004 0,68   0,68 

Average 0,74 0,58 0,69 

 

Table 1 above shows the original ECB and OECD estimations of multipliers, together with the final 

values used in our calculations. The values mean that given a 1% increase in government spending 

(as a ratio to the GDP), GDP is expected to increase by the given percentages. As these values lay 

below one, they mean that spending 100 EUR from the government budget results in a less than 100 

EUR increase in the GDP. Or reversely, in order to achieve a 100 EUR increase in economic output, 

the government has to spend more than 100 EUR. 

                                                             
9 Another approach could be using government transfers, but this would narrow down the basis for multiplier 
data to the OECD report. 
10 Although there is some variation, the long run effects do not differ too much from the short run effects. 



Table A3 contains the results of these calculations. The Direct Shadow Price column shows the raw 

shadow prices according to (7), before accounting for the fiscal multipliers. On average this comes 

out at 2.38 EUR per capita. After discounting with the multiplier we get higher numbers (as described 

above, 1 EUR spent by the government yields less then 1 EUR on GDP), with an average of 3.75 EUR 

per capita (Discounted Shadow Price column) across the sample. Given the population level of 

regions, we can easily aggregate up these per capita levels (Aggregate Shadow Price column). This 

results in a 7.61 million EUR shadow price for the average region: according to our logic, spending 

this amount of money equals the release of the REDI resource constraint by 0.01 unit. In other terms, 

this is the price of 0.01 REDI units. 

The logic of the calculations 
Our logic behind the method is illustrated in Figure 1. Fiscal impulse is assumed to affect the REDI 

score which is then assumed to affect the GDP level. From the measurement point of view, 

multipliers grasp the relationship between fiscal impulses and the GDP. The regression coefficient 

reflects the relationship between REDI and GDP. Using these two values, our shadow pricing logic 

quantifies the third relationship between fiscal impulse and REDI, thereby allowing for an estimate of 

the fiscal cost of changing the REDI score in a region. 

 

6. Summary and limitations of the method 
Although the methods presented above provide relatively easy ways to assign monetary values to 

the pillars of the REDI, they have clear limitations. 

 The values attained do not reflect real costs. Although the best way would be to 

systematically evaluate the cost of increasing the values of different pillars, this would 

require a substantial amount of information on how public and private resources spent on a 

diverse set of activities contribute to the improvement of the actually measured proxies of 

the different pillars. As this is a resource-intensive task with questionable results, we turned 

to the shadow pricing principle, which is used to assign somewhat ‘artificial’ prices, values to 

the natural units of some resources. 

 Although the best way to proceed in shadow pricing would be to focus on the cost side, that 

would mean setting up a cost function which eventually results in the same problems as 

mentioned in the previous point. Our approach thus builds on a value-side calculation. By 

linking the REDI scores to regional GDP levels, we are able to estimate how much an increase 



in a given pillar’s score (forward method) or the pillar scores together (optimization method) 

contribute to regional production in monetary terms. Instead of being a cost level, this 

estimate shows the value of the improvement in the pillars for the region. 

 Although the optimization method is methodologically more compact and builds on standard 

shadow pricing, it requires the assumption that the resources are allocated in an optimal way 

across the pillars, i.e. pillars are balanced. As a result, shadow price calculations use a 

situation (optimal allocation) as the starting point which does not coincide with actually 

observed allocation/structure of the REDI pillars in the regions. 
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Appendix 
 

Table A1. – Correlation matrix 

 

 

 

  LN_GPD_PPS
_perCap 

LN_K_ 

perCap 

LN_L_ 

perCap 

LN_REDIunit_ 

perCap 

LN_DENSITY CAPITAL 

Pearson 
Correlation 

LN_GPD_PPS_per
Cap 

1,000      

LN_K_perCap ,653 1,000     

LN_L_perCap ,567 ,234 1,000    

LN_REDIunit_per
Cap 

,290 ,206 ,319 1,000   

LN_DENSITY ,462 ,109 ,270 -,121 1,000  

CAPITAL ,247 ,151 ,111 -,073 ,220 1,000 

 

 

 

 

 

Table A2. – Collinearity Diagnostics 

 

Model Eigenvalue Conditi
on 
Index 

Variance Proportions 

(Consta
nt) 

LN_K_
perCap 

LN_L_
perCap 

LN_REDIun
it_perCap 

LN_DE
NSITY 

CAPI
TAL 

1 1 5,030 1,000 ,00 ,00 ,00 ,00 ,00 ,00 

2 ,885 2,385 ,00 ,00 ,00 ,00 ,00 ,92 

3 ,051 9,921 ,00 ,00 ,11 ,01 ,61 ,05 

4 ,018 16,609 ,02 ,17 ,09 ,25 ,14 ,00 

5 ,013 19,481 ,00 ,01 ,66 ,63 ,23 ,00 

6 ,002 46,996 ,98 ,83 ,13 ,11 ,02 ,02 

 

 

 

  



Table A3. – Results of shadow pricing per region with the forward and optimization methods (million EUR) 

Region Name Region 
Code 

Direct 
Shadow Price 

Country-level 
multipliers 

Discounted 
Shadow Price 

Population Aggregate 
Shadow Price 

(PPS EUR per 
capita) 

- (PPS EUR per 
capita) 

(Thousand 
capita) 

(Million PPS 
EUR) 

Ostösterreich AT1 2,1359 0,53 4,0300 1343,28 5,4134 

Südösterreich AT2 2,4996 0,53 4,7163 891,60 4,2050 

Westösterreich AT3 2,9013 0,53 5,4742 746,55 4,0867 

Région de Bruxelles-Capitale BE1 3,5952 0,55 6,5366 1154,80 7,5485 

Vlaams Gewest BE2 2,3493 0,55 4,2715 1303,28 5,5669 

Région wallonne BE3 1,9381 0,55 3,5238 680,03 2,3963 

Czech Republic CZ 2,2138 0,54 4,0997 1305,96 5,3540 

Baden-Württemberg DE1 2,4114 0,50 4,8228 2713,02 13,0844 

Bayern DE2 2,3179 0,50 4,6357 1942,48 9,0048 

Berlin DE3 1,9968 0,50 3,9937 3351,69 13,3856 

Brandenburg DE4 1,9768 0,50 3,9535 2454,90 9,7056 

Bremen DE5 3,0162 0,50 6,0323 654,54 3,9484 

Hamburg DE6 3,2707 0,50 6,5414 1726,70 11,2950 

Hessen DE7 2,2345 0,50 4,4691 2263,65 10,1164 

Mecklenburg-Vorpommern DE8 2,4702 0,50 4,9404 1605,24 7,9305 

Niedersachsen DE9 2,3266 0,50 4,6533 1946,89 9,0595 

Nordrhein-Westfalen DEA 2,3673 0,50 4,7346 3591,17 17,0027 

Rheinland-Pfalz DEB 2,0921 0,50 4,1843 1379,35 5,7716 

Saarland DEC 2,4369 0,50 4,8738 996,14 4,8550 

Sachsen DED 1,9717 0,50 3,9434 1337,79 5,2754 

Sachsen-Anhalt DEE 2,2043 0,50 4,4087 2269,62 10,0060 

Schleswig-Holstein DEF 2,1644 0,50 4,3287 2808,40 12,1568 

Thüringen DEG 2,3425 0,50 4,6850 2177,08 10,1996 

Hovedstaden DK01 2,0847 0,53 3,9334 1725,52 6,7871 

Sjælland DK02 1,5238 0,53 2,8750 818,21 2,3523 

Syddanmark DK03 1,9040 0,53 3,5925 1201,61 4,3168 

Midtjylland DK04 1,7423 0,53 3,2874 1269,41 4,1730 

Nordjylland DK05 1,6891 0,53 3,1870 580,46 1,8499 

Estonia EE 1,7294 0,83 2,0837 1322,30 2,7552 

Voreia Ellada EL1 3,0902 0,99 3,1372 771,94 2,4218 

Kentriki Ellada EL2 3,6790 0,99 3,7350 543,04 2,0283 

Attiki EL3 3,7454 0,99 3,8024 3928,20 14,9368 

Nisia Aigaiou, Kriti EL4 3,4002 0,99 3,4520 386,78 1,3352 

Galicia ES11 2,8543 0,61 4,7179 2760,14 13,0219 

Principado de Asturias ES12 2,6546 0,61 4,3878 1067,51 4,6840 

Cantabria ES13 2,9206 0,61 4,8274 589,27 2,8447 

País Vasco ES21 3,1236 0,61 5,1630 2174,99 11,2295 

Comunidad Foral de Navarra ES22 3,3462 0,61 5,5309 636,77 3,5219 

La Rioja ES23 3,5798 0,61 5,9170 317,99 1,8816 

Aragón ES24 3,3786 0,61 5,5844 1337,75 7,4705 



Comunidad de Madrid ES30 2,6844 0,61 4,4371 6386,13 28,3358 

Castilla y León ES41 2,9643 0,61 4,8997 2520,35 12,3490 

Castilla-la Mancha ES42 2,9794 0,61 4,9247 2087,23 10,2790 

Extremadura ES43 2,6401 0,61 4,3638 1099,35 4,7974 

Cataluña ES51 2,9401 0,61 4,8597 7453,89 36,2239 

Comunidad Valenciana ES52 2,6436 0,61 4,3695 4977,52 21,7494 

Illes Balears ES53 3,1923 0,61 5,2765 1104,00 5,8253 

Andalucía ES61 2,3393 0,61 3,8666 8360,56 32,3273 

Región de Murcia ES62 2,7104 0,61 4,4800 1460,46 6,5429 

Canarias (ES) ES70 2,9635 0,61 4,8983 2089,83 10,2366 

Länsi-Suomi FI19 1,9828 0,71 2,7927 1367,14 3,8180 

Helsinki-Uusimaa FI1B 2,2761 0,71 3,2058 1558,71 4,9969 

Etelä-Suomi FI1C 1,8259 0,71 2,5717 1159,34 2,9815 

Pohjois- ja Itä-Suomi FI1D 1,8688 0,71 2,6321 1299,50 3,4204 

Île de France FR1 2,6516 0,79 3,3778 11942,86 40,3410 

Bassin Parisien FR2 2,2214 0,79 2,8298 1797,81 5,0875 

Nord - Pas-de-Calais FR3 2,0046 0,79 2,5536 4059,26 10,3656 

Est (FR) FR4 2,1246 0,79 2,7065 1795,64 4,8600 

Ouest (FR) FR5 2,1271 0,79 2,7097 2925,41 7,9270 

Sud-Ouest (FR) FR6 2,1324 0,79 2,7164 2404,04 6,5304 

Centre-Est (FR) FR7 1,7745 0,79 2,2605 4104,42 9,2782 

Méditerranée FR8 1,9861 0,79 2,5301 2764,30 6,9939 

Jadranska Hrvatska (Adriatic Croatia) HR03 2,2184 0,79 2,8260 1409,57 3,9834 

Kontinentalna Hrvatska (Continental Croatia) HR04 2,2522 0,79 2,8691 2858,38 8,2009 

Közép-Magyarország HU10 3,3785 0,68 4,9929 2968,25 14,8202 

Közép-Dunántúl HU21 3,3095 0,68 4,8909 1080,97 5,2869 

Nyugat-Dunántúl HU22 3,3828 0,68 4,9993 989,25 4,9455 

Dél-Dunántúl HU23 2,4520 0,68 3,6237 928,60 3,3650 

Észak-Magyarország HU31 2,2224 0,68 3,2843 1185,20 3,8925 

Észak-Alföld HU32 2,5468 0,68 3,7637 1483,20 5,5823 

Dél-Alföld HU33 2,7028 0,68 3,9942 1292,92 5,1642 

Border, Midland and Western IE01 1,5118 0,33 4,5812 1242,51 5,6922 

Southern and Eastern IE02 2,3303 0,33 7,0615 3363,58 23,7520 

Nord-Ovest ITC 3,6554 0,71 5,1850 4090,54 21,2095 

Sud ITF 3,1381 0,71 4,4512 2217,17 9,8690 

Isole ITG 3,0191 0,71 4,2824 3224,74 13,8097 

Nord-Est ITH 4,0595 0,71 5,7581 2205,95 12,7021 

Centro (IT) ITI 3,3831 0,71 4,7987 3167,93 15,2020 

Lithuania LT 2,2386 0,98 2,2843 2992,85 6,8365 

Latvia LV 1,9105 0,98 1,9494 2034,96 3,9670 

Noord-Nederland NL1 2,2640 0,64 3,5654 574,88 2,0497 

Oost-Nederland NL2 1,9500 0,64 3,0709 1207,50 3,7082 

West-Nederland NL3 2,1567 0,64 3,3963 2069,37 7,0283 

Zuid-Nederland NL4 2,0808 0,64 3,2768 1866,14 6,1150 

Region Centralny PL1 2,1367 0,68 3,1576 4254,12 13,4329 



Region Poludniowy PL2 1,9177 0,68 2,8340 3988,48 11,3034 

Region Wschodni PL3 1,8674 0,68 2,7598 1653,45 4,5631 

Region Pólnocno-Zachodni PL4 1,9179 0,68 2,8343 2157,50 6,1151 

Region Poludniowo-Zachodni PL5 1,9000 0,68 2,8078 2060,39 5,7852 

Region Pólnocny PL6 1,7716 0,68 2,6181 1955,43 5,1195 

Norte PT11 2,1858 0,77 2,8573 3667,91 10,4804 

Algarve PT15 2,5993 0,77 3,3978 446,63 1,5176 

Centro (PT) PT16 2,3460 0,77 3,0667 2305,60 7,0705 

Lisboa PT17 2,5553 0,77 3,3402 2815,10 9,4030 

Alentejo PT18 2,3612 0,77 3,0865 750,88 2,3176 

Macroregiunea unu RO1 2,1004 0,68 3,1041 2536,58 7,8737 

Macroregiunea doi RO2 1,7938 0,68 2,6509 2975,84 7,8886 

Macroregiunea trei RO3 3,1718 0,68 4,6874 2507,89 11,7554 

Macroregiunea patru RO4 2,1511 0,68 3,1789 1970,13 6,2629 

Stockholm SE11 2,3627 0,50 4,7732 2109,82 10,0705 

Östra Mellansverige SE12 1,6317 0,50 3,2963 1587,57 5,2331 

Småland med öarna SE21 2,1325 0,50 4,3081 815,58 3,5137 

Sydsverige SE22 1,5589 0,50 3,1493 1412,08 4,4471 

Västsverige SE23 1,8025 0,50 3,6414 1901,32 6,9235 

Norra Mellansverige SE31 1,9845 0,50 4,0090 828,00 3,3194 

Mellersta Norrland SE32 2,0934 0,50 4,2291 368,96 1,5604 

Övre Norrland SE33 1,9293 0,50 3,8975 509,21 1,9847 

Vzhodna Slovenija SI01 1,7496 0,66 2,6509 1096,56 2,9068 

Zahodna Slovenija SI02 2,1262 0,66 3,2215 959,16 3,0899 

Bratislavský kraj SK01 3,6744 0,98 3,7494 609,45 2,2851 

Západné Slovensko SK02 2,7515 0,98 2,8076 1837,68 5,1595 

Stredné Slovensko SK03 2,3390 0,98 2,3867 1348,21 3,2178 

Východné Slovensko SK04 2,1937 0,98 2,2385 1609,30 3,6023 

North East (UK) UKC 1,6977 0,74 2,2943 1310,20 3,0059 

North West (UK) UKD 1,8899 0,74 2,5539 1376,81 3,5163 

Yorkshire and The Humber UKE 1,6563 0,74 2,2382 1328,20 2,9728 

East Midlands (UK) UKF 1,6067 0,74 2,1712 1561,65 3,3907 

West Midlands (UK) UKG 1,7063 0,74 2,3059 1864,02 4,2982 

East of England UKH 1,5447 0,74 2,0874 1969,32 4,1107 

London UKI 2,9505 0,74 3,9872 1449,06 5,7777 

South East (UK) UKJ 1,7095 0,74 2,3101 2215,32 5,1177 

South West (UK) UKK 1,5242 0,74 2,0598 1455,35 2,9977 

Wales UKL 1,6856 0,74 2,2779 1474,81 3,3595 

Scotland UKM 2,0218 0,74 2,7322 1207,75 3,2998 

Northern Ireland (UK) UKN 1,6617 0,74 2,2455 1822,80 4,0931 

Average 2,3811 0,66 3,75 2026,58 7,6126 

 


