
 

Közgazdasági és Regionális Tudományok Intézete 
Pécsi Tudományegyetem, Közgazdaságtudományi Kar 

 
 
 
 
 
 

MŰHELYTANULMÁNYOK 
 
 
 
 
 
 
 

Research Productivity and the Quality of   
Interregional Knowledge Networks 

 
 
 
 
 

Tamás Sebestyén 
 

and 
 

Attila Varga 
 
 
 
 
 
 

2012/2 
 
 
 
 

2012. június 
 
 
 



 

 
Szerkesztőbizottság: 
 
 
Barancsuk János 
Szabó Zoltán  
Varga Attila (elnök) 
 



 

Research Productivity and the Quality of   
Interregional Knowledge Networks 

 
 
 

Tamás Sebestyén 
Pécsi Tudományegyetem 

Közgazdaságtudományi Kar 
Közgazdasági és Regionális Tudományok Intézete 

sebestyent@ktk.pte.hu 

http://www.krti.ktk.pte.hu/index.php?p=contents&cid=27 
 

and 
 

Attila Varga* 
Pécsi Tudományegyetem 

Közgazdaságtudományi Kar 
Közgazdasági és Regionális Tudományok Intézete 

vargaa@ktk.pte.hu 

http://www.krti.ktk.pte.hu/index.php?p=contents&cid=29 
 
 
 

 
*Corresponding author 
 
Keywords: patents, scientific publications, knowledge networks, R&D 
productivity, regional knowledge production function, European regions 
 
JEL Codes: O33, R11, R58 
 
Abstract 

This paper estimates the impact of interregional knowledge flows on the 
productivity of research at the regional level. We develop the novel index of 
’ego network quality’ in order to measure the value of knowledge that can be 
accessed from a particular region’s global knowledge network. Quality of 
interregional knowledge networks is related to the size of knowledge 
accumulated by the partners (‘knowledge potential’), the extent of collaboration 
among partners  (‘local density’) and the position of partners in the entire 
knowledge network (‘global embeddedness’). Ego network quality impact on 
the productivity of research in scientific publications and patenting at the 
regional level is tested with co-patenting and EU Framework Program 
collaboration data for 189 European NUTS 2 regions.  
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Research Productivity and the Quality of Interregional 
Knowledge Networks1 
 
 

1. Introduction 
 
Scholarly attention towards the spatial dimension of knowledge flows has 
intensified in the past two decades in economics in general and in 
regional science and economic geography in particular. Since innovation 
is significantly related to existing knowledge, understanding the 
mechanisms of knowledge communication in space is essential for 
understanding the geography of economic growth. When knowledge 
flows (e.g., spillovers facilitated by informal relations, learning in 
research collaborations or knowledge transfers mediated by market 
transactions) are dominantly local, economic growth will most probably 
be highly uneven in space. Alternatively, globally flying knowledge may 
contribute to the spreading of economic growth (Fujita and Thisse 2002).  
 
Most of the research in this field has focused on the role of spatial 
proximity in innovation. The early papers (Jaffe 1989, Jaffe, Trajtenberg 
and Henderson 1993, Anselin, Varga and Acs 1997) evidenced that 
knowledge flows between firms, private and public R&D labs are to a 
large extent localized geographically. Later on, several studies applying 
similar research methods in different countries supported this finding 
(Ghinamo 2010). It became clear soon, that besides pure knowledge 
spillovers, local labor markets (Breschi and Lissoni 2009), 
entrepreneurship (Zucker and Darby 1998) or formalized research 
collaborations (Miguélez and Moreno 2012) contribute importantly to the 
localized communication of knowledge. Though the proximity of 
industry-specific (specialized) knowledge could also be important, 
empirical findings suggest that the diversity of the local knowledge base 
is associated most frequently with regional growth (Glaeser, Kallar and 
Scheinkman 1991, Feldman and Audretsch 1999). Deeper analysis 
reveals that not a simple diversity of industries but their technological 
relatedness is what nurtures innovation (Frenken, van Oort and Verburg 
2007).  
 
Subsequent research clarifies that spatial proximity is neither a sufficient 
nor a necessary condition for knowledge flows to occur (Boschma 2005). 
Instead, other forms of proximities (such as cognitive, social, institutional 
or organizational proximities) are the crucial prerequisites of knowledge 
                                                        
1  We would like to express our thanks to Dimitris Pontikakis and George Chorafakis for their 
contribution to the development of the data applied in our analyses.  
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communication. Geographical proximity of actors in innovation may 
enhance the flow of knowledge but only if at least one of the other 
proximities are also in effect. Physically proximate location provides only 
the opportunities for frequent interactions. These interactions might 
become instrumental for the speedy flow of both tacit and codified 
knowledge as well as for the development of trust or the establishment of 
common codes of communication (Koschatzky 2000). Ponds, van Oort 
and Frenken (2009) show empirically that spatial proximity helps 
bridging institutional distances between business, academia and 
government. Thus, knowledge flows between different types of 
organizations tend to be localized. On the other hand, knowledge 
communication could also occur over larger physical distances among 
actors sharing similar institutional features.  
 
Compared to the high intensity of research on localized knowledge 
interactions, scientific inquiry on the mechanisms and regional impacts of 
global knowledge flows is still a relatively less developed and novel 
phenomenon. Spatial econometric studies brought the first empirical 
evidence on the existence of interregional knowledge transfers and their 
positive role in regional innovation (Anselin, Varga and Acs 1997, Varga 
1998). Recent efforts in the literature focus on studying various 
mechanisms of interregional knowledge flows ranging from professional 
labor mobility (Maier, Kurka and Trippl 2007, Schiller and Diez 2008, 
Miguélez, Moreno and Suriñach 2009), research collaboration (Maggioni 
and Uberti 2011) and co-inventorship (Breschi and Lenzi 2011) to the 
operation of multinational companies (Cantwell and Iammarino 2003).  
 
Network analysis (NA) is an especially promising tool for the study of 
interregional knowledge flows. Different measures of network structure 
such as network size, centrality of actors or density of interactions appear 
particularly powerful for understanding the geography of knowledge 
production. Much of the scientific inquiry in interregional knowledge 
interactions applying NA techniques grows out from the spatial 
econometrics tradition. Researchers realize that weights matrices 
routinely used in spatial econometrics to represent relations in space can 
also be applied to characterize relative positions in interregional 
knowledge networks (Maggioni and Uberti 2011). It is shown in this 
literature that the number of interregional partners in research or 
invention and their levels of knowledge (measured by e.g. R&D 
expenditures or publication stock) are indeed influential factors in 
regional knowledge production (Maggioni, Nosvelli and Uberti 2007, 
Hoekman, Frenken and van Oort 2009, Varga, Pontikakis and Chorafakis 
2010).  
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Thus, the literature suggests that the larger the number of interregional 
partners is and the higher their knowledge levels are, the more effective a 
region becomes in knowledge generation. Related to this finding at least 
two important questions arise. First, some complementary relationship 
might exist between network size and the level of knowledge in the 
network. A small network with a limited number of highly 
knowledgeable partners might be as valuable for a region as a large 
network with partners possessing diverse knowledge levels. A 
comprehensive measure aggregating different network features could 
potentially account for such complementarities. Additionally, some other 
features of interregional networks could also influence research 
productivity.  
 
In this paper we intend to make a step further in the research addressing 
the relationship between interregional knowledge flows and regional 
knowledge creation. We structure the problem by directing attention to 
the value of a particular interregional network for a particular region. 
This value is reflected by the contribution of knowledge accessed in the 
network to the production of new knowledge inside the region. In order to 
make the problem empirically tractable we quantify certain features of 
interregional networks that could be instrumental for regional knowledge 
production additional to what have already been accounted for in the 
spatial literature (i.e., number of partners and their knowledge levels). 
Building on these measures and continuing the research line in Varga and 
Parag (2009) we develop a novel comprehensive index to account for the 
quality of a region’s global knowledge network. The higher this index 
value gets, the larger the amount of knowledge potentially accessed from 
the network will be. We also provide a test on the hypothesized positive 
relationship between interregional knowledge network quality and 
regional research productivity. In pursuit of this we investigate two 
interregional networks: EU Framework Program collaborations and 
European co-patenting, both considered at the level of EU NUTS2 
regions. The two networks refer to two types of new knowledge 
generation processes: the production of new scientific knowledge 
measured by publications and the production of new technological 
knowledge measured by patent applications.  
 
Our paper is structured as follows. The second section introduces the 
concept of ego network quality, followed by the section describing the 
analytical model and the data used in the empirical analysis. The fifth 
section presents the results on how the quality of a region’s interregional 
network affects the productivity of research in the creation of 
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publications and patents at the regional level. The last section summarizes 
our findings and highlights potential further research directions.  
 
 

2. Ego network quality 
 
The theory of innovation emphasizes the role of interactions among 
different actors in innovation. These interactions follow a system and the 
characteristics of the system determines to a large extent the efficiency of 
new knowledge production (Lundvall 1992, Nelson 1993). An extensive 
survey-based empirical literature evidences that innovation is indeed a 
collective process where the knowledge and expertise of partners as well 
as the intensity of collaborations among them largely determines the 
production of new, economically useful knowledge (e.g., Diez 2002, 
Fischer and Varga 2002). Representing actors as nodes and their 
connections as ties, interactions of collaborating agents can be mapped as 
a network. On the basis of this representation the application of network 
analysis extends the frontiers of the study of knowledge interactions well 
beyond the possibilities of traditional innovation surveys.  
 
Research on the interrelationships between the structure of actors’ 
individual network and the performance of actors in knowledge 
production is a relatively recent phenomenon. Four features of individual 
(ego) networks are considered in this literature: 1) characteristics of 
immediate partners and the intensity of the actor’s relations with them 
(number of partners, strength of ties, knowledge of partners); 2) density 
of interactions between partners; 3) diversity of knowledge accessed 
through the network (by being in contact with different fields of 
research); 4) the position of an agent in the entire network (in order to 
account for the impact of knowledge accessed beyond the ego network).  
 
As shown in the literature, number of partners (Powell et al. 1999, Hopp 
et al. 2010, Van Der Deijl, Kelchtermans and Veugelers 2011), tie 
strength (Van Der Deijl, Kelchtermans and Veugelers 2011) and 
knowledge of partners (Maggioni, Nosvelli and Uberti 2006, Hoekman, 
Frenken and van Oort 2009, Varga, Pontikakis and Chorafakis 2010) are 
in a positive relationship with the productivity of research. However, the 
influence of the intensity of interactions is ambiguous. It positively 
affects agents’ patenting productivity in Salmenkaita (2004) and Cross 
and Cummings (2004), the impact follows an inverted U-shape in Van 
Der Deijl, Kelchtermans and Veugelers (2011), while the influence on 
academic publishing is negative in Rumsey-Wairepo (2006) and Cainelli 
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et al. (2010)2. It is also found that both knowledge diversity of partners 
(Powell et al. 1999, Cainelli et al 2010, Van Der Deijl, Kelchtermans and 
Veugelers 2011) and a central position in the entire network (Powell et al. 
1999, Cainelli et al. 2010, Hopp et al. 2010, Van Der Deijl, Kelchtermans 
and Veugelers 2011) positively affect performance in knowledge 
generation.  
 
In this paper we develop and apply the index of Ego Network Quality 
(ENQ) in empirically testing the impact of interregional knowledge 
networks on regional research productivity. The higher the value of ENQ 
is, the higher the level of knowledge to be accessed from the network. 
The first intuition beyond ENQ is that the level of knowledge accessed 
from an agent’s network is in a positive relationship with the total 
knowledge of immediate partners. The second intuition is that 
collaboration among network partners is the source of further growth of 
knowledge in the network. We also assume that partners in a network not 
only increase the amount of knowledge accessible, but also contribute to 
its diversity through building links to different groups in the network.  
 
ENQ integrates ego network features highlighted in the preceding 
paragraphs into one comprehensive measure. Based on the literature 
given above, we propose three dimensions for ENQ: Knowledge 
Potential, Local Density and Global Embeddeddness. Knowledge 
Potential (KP) measures knowledge accumulated in the immediate 
neighborhood and it is related to number of partners, strength of ties, and 
knowledge of individual partners. Local Density (LD) is associated with 
the intensity of interactions among partners in the ego network, while 
Global Embeddeddness (GE) measures the extent to which knowledge 
developed in other networks becomes accessible through immediate 
partners. In what follows, we propose appropriate measures for these 
three dimensions and then comprise them into one single index of Ego 
Network Quality.  
 
                                                        
2 Referred to as intensity here, the question of cohesion in a network is also tackled from the social 
capital perspective. Here the debate is on wether cohesive, closed structures (Coleman, 1986) or 
’structural holes’ (Burt, 1992) provide a better background for performance. Although many of the 
results in this field show that a position in structural holes contribute to better performance in a 
diversity of fields (e.g. Hopp et al (2010), Kretschmer (2004), Donckels and Lambrecht (1997), Zaheer 
and Bell (2005), Powell et al. (1999), Tsai (2001), Burt et al. (2000), Burton et al (2010)), there is still 
evidence on the opposite (Salmenkaita, 2004), Cross and Cummings (2004). Rumsey-Wairepo (2006) 
argues that the two structural settings are complementaries rather than substitutes in explaining 
performance. In our context we also emphasize that different structural dimensions can be important 
for different networks. When information flows and power is important, structural holes indeed provide 
better position, however, as in our case, if knowledge production is in the focus, exclusion resulting 
from structural holes may be harmful and cohesiveness meaning better interaction may have positive 
contribution. 
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Knowledge Potential 

The concept of KP relates to the amount of knowledge an agent’s 
immediate partners possess. A straightforward way to capture this 
concept is to simply sum up the knowledge levels of immediate partners, 
where knowledge level is represented by some exogenous measure 
contained in a vector k = [��]. KP is then measured by the simple sum of 
the immediate neighbors’ knowledge: 
                ��� = ∑ 	�
�

 ,                                                         (1)                             
 
where 	�
 takes the value of 1 if � and � are partners and 0 otherwise.3 
Note, that in the specific case of evenly distributed knowledge levels, or 
in other words, if we do not take into account the difference in the 
weights of the nodes in the network, this measure simplifies to nodal 
degree, familiar from graph theory and network analysis.4 
 
Local Density 

We define LD as the intensity of cooperation among the partners of an 
agent’s network. Local clustering coefficient as defined by Watts and 
Strogatz (1998) measures the density of ties in a node’s neighborhood, 
i.e. the number of existing links among neighbors relative to the 
maximum possible number of such ties. However, this measure is largely 
dependent on the size of the neighborhood itself, therefore leading to 
considerable biases. For example in the case of a node with three 
neighbors where all three neighbors are linked to each other the local 
clustering coefficient would give a value of 1, which is the maximum 
possible. On the other hand, if a node has 10 neighbors among which 
altogether 15 ties are counted, the clustering coefficient is 0.33, which is 
much less than unity. However, no one would intuitively conclude that 
the neighborhood of the first node with three neighbors is denser in the 
common sense than that of the second node. 
 
In order to avoid this problem, we use a similar measure for local density 
which is the average number of links in the neighborhood: the total 
number of ties in the neighborhood divided by the number of neighbors. 
Formally we can write: 
 

                                                        
3 The same notation and methodology can be used in the case of weighted networks. If the weights are 
normalized to the interval between 0 and 1, than the formulae presented for the binary networks are 
directly applicable for the weighted counterparts.  
4 If �� = 1 for all �, then this similarity is straightforward. However, if �� = �� ≠ 1, then degree and the 
above mentioned measure of KP are not equal but proportional. 
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��� = ∑ ���∑ ��������
��� + 1                                           (2) 

 
where �� = ∑ 	�

  is the number of node �’s neighbors. The expression in 
the nominator counts the number of links among node �’s neighbors (� 
and �  are also indices of the nodes). However, as the network is 
symmetric, every such node is counted twice, hence the number in the 
denominator. Adding one at the end of the expression serves to include 
not just ties among node �’s partners but the nodes connecting it to the 
neighbors (dividing this total number of links in the neighborhood with 
the size of the neighborhood gives the simple unity shift as a result).  
 
It is clear, that the difference between this measure of local density and 
the local clustering coefficient is minor, and lies in the denominator of the 
expression and the additional constant. In the case of the local clustering 
coefficient only the first term is in effect with the denominator being ��(�� − 1)  instead of �� . Although it has no additional value in this 
specific place, the constant is included because in the third measure (GE) 
not just links among partners at specific distances are relevant but links 
that tie nodes at different distances. This way, the measure for LD is 
generalized later and the constant at the end obtains a specific content.  
 
 
Global Embeddedness 

KP and LD are measures that capture the local structure of a node’s 
network. Our concept behind global embeddedness is to take into account 
the structure of the network behind the immediate neighborhood. In this 
respect, we are looking for a decent centrality measure.  
 
There are several measures of centrality, which are widely accepted in 
network analysis. The simplest and most widely used is degree centrality, 
which only counts one’s connections. As it was mentioned, this is 
included in the KP measure, though in a weighted version. On the other 
hand, degree is a local centrality measure and we are attempting to look 
behind local structures. Other centrality measures are for example 
closeness and betweenness centrality (Freeman, 1979), however, these 
indices capture specific aspects of centrality, and we are looking for a 
more generalized view. The ‘global’ and weighted extension of degree 
centrality is eigenvector centrality, which gives a recursive definition for 
the centrality of a node (see Bonacich (1972), Bonacich (2007)). 
However, it is also redundant for us as it gives the highest weight to the 
local degree of a node. In order to avoid counting local ties more than 
once and be as general as possible, we propose a recursive definition for 
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GE as follows. GE reflects the knowledge-and distance-weighted 
Knowledge Potential and Local Density of neighborhoods at different 
distances from the node in question. Formally: 
 ��� = ∑  !! ��!���!�                                          (3) 
 
where " is the index of distance (starting from 2), ��!�  is the Knowledge 
Potential (i.e., the sum of knowledge levels) of the nodes at distance " 
from node �, ��!�  is the Local Density (as defined before) of the nodes at 
distance " from node �. Note that ��!�  counts the links among nodes at 
distance "  and the links bridging nodes at distances " − 1  and " .  ! 
denotes a weight for distance " . Throughout the paper we use linear 
weights, but any weighting method can be used.5 
 
Ego Network Quality 

The three measures detailed above are then linked together into a 
comprehensive index of Ego Network Quality. The three measures are 
connected as a sum of a local knowledge-weighted cooperation intensity 
and a global knowledge-weighted cooperation intensity, the latter being a 
distance-weighted sum of knowledge-weighted cooperation intensities at 
different distances. In other words, the local part of this measure can be 
regarded as a special case of the distance-specific knowledge-weighted 
cooperation intensities. Formally we can write: 
 ��#� = ������ + ���                                              (4) 
 
This formula can be converted into a compact form if we define the 
sequence of node-generated subgraphs $!� , where $!�  stands for a 
subgarph containing nodes, which are at most distance " from node �, and 
the edges between all such nodes. Let’s denote the matrix of geodesic 
distances by G = [%�
], and use the following notation: 
 

&!� = ∑ ∑ ����,(��)*�,(��)*
�                                                 (5) 

 
In other words, &!�  gives the number of edges counted in the subgraph 
containing nodes at distance " or less from node �, i.e., the number of 
edges in $!� . It is easy to see that we can now substitute the previously 

                                                        
5 By linear weights we mean that weights decrease linearly as distance increases. Specifically, the 
weight is 1 at distance 1 and it is calibrated to 0 for distance +, where + is the number of nodes in the 
network thus + − 1 is the longest possible path. The specific expression employed for the weights is:  ! = "(1 − +) − +/(1 − +). This specification satisfies the required conditions. 
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given measure for ��!�  by (&!� − &!-.� )/�!� , where �!�  is the number of 
nodes at distance "  from node � . Using &/� = 0 , by definition, 6  the 
expression in equation (2) for the case " = 1 is written as ��.� = &.�/�.�. 
Using this notation we can reformulate ��#� in the following form: 
 

��#� = ��.� 12��2� + �����
13�-12�
�3� +⋯+ 5-.��5-.� 1672� -1673�

�672�             (6) 

 
Again, using &/� = 0  and  . = 1 , this formula can be written more 
comprehensively: 
 

��#� = ∑  !��!� 1*�-1*72��*�5-.!8. 														                       (7) 

 
It can be demonstrated that if the distance to the partners is 1 and 
knowledge level is identical across partners ENQ counts the total number 
of links in the network. On the other hand, if knowledge weights are not 
considered but distance weights are in effect, ENQ shows common 
features with the distance-weighted sum of degrees in the network. (The 
Appendix provides the derivation of these two special cases.) 
 
ENQ in a dynamic context 

In this section we provide a descriptive analysis of the previously 
proposed ENQ measure. The behavior of ENQ in a dynamic context is 
shown on a sample network. Our goal in this respect is to demonstrate 
how changes in the network position affect ENQ. In the panels of Figure 
1 three snapshots of a network is indicated. The three snapshots are 
illustrations of a dynamic process of network evolution.7 Our focus is on 
one specific node, marked by the black square whereas another reference 
node is highlighted by the grey square. The grey node starts (in the top 
panel) in a central position and retains it, while the black node starts in a 
very peripheral position. The labels at each node indicate the knowledge 
level, which is attributed to each node by simply calculating the degree 
for the first snapshot.8 These knowledge levels are not altered later in 
order to keep things simple. The size of the squares representing the 
nodes indicates the ENQ measure, calculated according to the method 
presented previously. 
 
                                                        
6 The node at distance 0 from node � is itself therefore we have a trivial graph where the number of 
edges is zero by definition. 
7 However, only a specific range of the network changes in order to keep the demonstration as simple 
as possible. 
8 This way we can reproduce a specific feature of real-world networks, namely that nodes in a central 
position tend to be nodes with higher knowledge, information or resources in general. 
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Figure 1. The impact of changing network positions on ENQ 
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Table 1 presents the KP, LD, GE and ENQ scores of the grey and black 
nodes in the three snapshots. In the first step the black node is quite 
peripheral. In the second step it establishes several links, but mainly to 
other relatively peripheral actors of the network. In step three only one 
additional link is established, but it links the black node to the grey one, 
that is, to one of the centers of the network. This special evolution is 
reflected in the scores for the different measures. At the first stage the 
black node has a low ranking in all three measures. The second step 
provides it with considerable new knowledge increasing its local density 
(LD) and global embeddedness (GE). In the third step, that one link has 
similar effects as the three links together in the previous step. Although 
LD decreases (due to the fact that the grey node is not linked to the other 
neighbors of the black node), KP and GE increase considerably. 
 
Looking at the changes at the central (grey) node, we can see that the first 
step makes little change in its position. As no new links are established 
by this node itself and between its neighbors, the KP and LD are 
unchanged. GE increases a bit as the new links not very far from it 
provide a better embeddedness (more directly accessible knowledge and a 
denser structure of the network). In the third step, however, KP also 
increases with the direct access to a new node. LD decreases for the same 
reason as it decreases in this step for the black node. 
 

Table 1. The impact of changing network positions on ENQ 

 

BLACK NODE 

  KP LD GE ENQ 

Snapshot 1 3,00 1,00 33,49 36,49 
Snapshot 2 11,00 1,20 45,23 58,43 
Snapshot 3 18,00 1,17 55,15 76,15 

GREY NODE 

  KP LD GE ENQ 

Snapshot 1 23,00 1,29 47,76 77,33 
Snapshot 2 23,00 1,29 50,94 80,51 
Snapshot 3 25,00 1,25 53,57 84,82 

 
ENQ in some reference networks 

The two sample networks analyzed here were intentionally structured as 
to serve our goals of exhibition. In the following paragraphs a similar 
analysis is carried out briefly in some representative reference networks, 
with attention to the correlation between the three basic measures used in 
the composite ENQ index. Three specific network structures are usually 
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taken as reference in network theory: (i) the regular network, where each 
node has the same number of links; (ii) the Erdős-Rényi type random 
network where links are distributed evenly according to a predefined 
probability;9 (iii) the scalefree network where the distribution of degree 
values follows a power law.10 The first possibility, the regular network is 
of no interest here as in such a network the nodes are symmetric thus only 
the exogenous knowledge levels account for differences in ENQ. The 
other two specific structures are analyzed below. The networks, for which 
KP, LD, GE and ENQ measures are calculated, are simulated networks 
with 300 nodes with 10% density. Figure 2 shows the correlation 
diagrams between the different measures in question for the random and 
the scale-free networks. 

 
 

Figure 2. Correlation diagrams – Random and Scalefree network simulations 

                                                        
9 This probability in turn defines the overall (global) density of the network. 
10  Scalefree networks are generated according to the preferential attachment model (Barabási and 
Albert, 1999) 
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As it can be seen from Figure 2, there is no considerable correlation 
between the three basic measures in a random network. This means that 
these measures can be regarded as complements: in general, all capture 
different aspects of the position of a given node. This independence 
disappears in a scale-free network: there is a positive correlation between 
KP and LD. For the clear interpretation of these results we must note that 
the network generating algorithm constructs a one-centered network. This 
results in the fact that nodes in the center (i.e. with lots of links and 
surrounding knowledge) tend to be found in the more tightly linked part 
of the network, which is the center. Similarly, there is a negative 
correlation between KP and GE, stemming from the fact that nodes in the 
center have no other considerable cores in the surrounding. The negative 
correlation between LD and GE results from the correlation between the 
previous two measures. 
 
These results first prove that the three measures taken into account in our 
study capture different aspects of network position in general. However, 
if we consider specific network structures, there may be considerable 
correlations between these measures. Irrespective of these correlations, 
however, the ENQ index can be used to reflect individual differences in 
network position: by comprising three different (and possibly unrelated) 
aspects of this position, we can catch a more detailed description of it 
compared to the use of one single measure. This is marked by the fact 
that there is still variation in the pictures for scale-free networks – and 
keep in mind that these simulated networks exhibit considerable 
regularity due to the preferential attachment algorithm. 
 
 
3.  Empirical model and data 
 
Our starting point is the knowledge production function initially specified 
by Romer (1990) and parameterised by Jones (1995). In the interpretation 
of the parameters we follow Varga (2006).  
 

                                  dAi / dt = δ HAi
λAi

φ
     (8) 

 
where dA/dt is the temporal change in technological knowledge, HA 

refers to research inputs (e.g. number of researchers or research 
expenditures), A is the total stock of already existing scientific and 
technological knowledge (knowledge codified into publications, patents 
etc.) and i stands for the spatial unit. Thus technological change is 
associated with contemporary R&D efforts and previously accumulated 
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knowledge. The same number of researchers can have a varying impact 
on technological change depending on the stock of already existing 
knowledge. Two parameters are particularly important for this paper. The 
size of φ reflects the impact of the transfer of codified knowledge. 
Regarding parameter λ the larger its size is, the stronger the impact the 
same number of researchers will play in technological change. Its value 
thus reflects the productivity of research in region i. We assume that the 
size of λ is positively related to the quality of interregional knowledge 
networks measured by ENQ.  
 
In order to test empirically the hypothesised relationships we follow 
Varga (2000) and Varga, Pontikakis and Chorafakis (2010) and use the 
following econometric specifications. Using subscripts i and N to denote 
individual regions and nations (in our case EU member states) 
respectively, the empirical counterpart of the Romer (KPF) is specified 
as:  
 
              log K> = a/ + a. log RD> + a� log KSTOCKF +	Z> 	+ 	ε>         (9) 
 
where K stands for new scientific-technological knowledge, RD is 
expenditure on research and development, KSTOCK represents already 
existing scientific/technological knowledge at the national level and Z 
stands for additional regional control variables. We use national patent 
stock as a proxy for codified technological knowledge reachable with 
unlimited spatial accessibility within the country.  
 
Equation 10 relates research productivity measured by a1,i the parameter 
of the research variable in Equation 9 to interregional network quality. 
 
                                              a.,> = β/ + β. log ENQ>           (10) 
 
Substituting equation 10 to equation 9 results in the following equation to 
be estimated: 
 
Log(Ki, t) = α0 + β0Log(RDi, t-k)+ β1Log(ENQi)*Log(RDi, t-k)  
                  + α2Log(KSTCKN, t-k)  + Zi + εi.                                          (11) 
 
The empirical analysis in this paper is based on a sample of 189 European 
regions (a mix of NUTS2 and NUTS1 regions) for which information 
was complete enough for our purposes. We use a cross-sectional 
database, though a two-year time lag is employed. The time period under 
consideration is determined by the duration of the 5th Framework 
Program of the EU, spanning the years 1998-2002. According to this, 
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dependent variables are given for 2002, the independent variables are 
given for 2000 and the network variables are based on network 
connections observed throughout the period between 1998 and 2002. 
 
As to reflect knowledge flows in the production of new scientific results 
(resulting from Pasteur- type knowledge generation) on the one hand and 
new technological knowledge (a result of Edison-type knowledge 
production) on the other, we use different proxies for each, leading to 
different estimated equations and variables. Dependent variables are 
patenting activity and publication activity at the regional level as proxied 
by patent applications to the EPO (PATi) and scientific publications in 
ISI journals (PUBi) respectively. We do not make any distinction 
between technological and scientific fields, so patent and publication 
counts are aggregated measures in this respect. Although using patents as 
a proxy for technological innovation is far from a perfect solution, there 
are several reasons why it still remains one of the most widely used and 
accepted measures (see e.g. Griliches 1990, for a comprehensive study on 
the issue, or Acs, Anselin and Varga 2002, for an analysis on the links 
between patent and other innovation counts at the level of regions). 
Publications are a somewhat stronger proxy for scientific knowledge and 
also used widely in innovation studies (van Raan 2004). Although the 
publishing motivation in academic science lends more reliability to 
publication counts, there are still biases stemming from journal coverage 
and distortions of evaluating mechanisms. Overall, although such biases 
may be relevant in an inter-regional comparison, given our central 
question here there are no strong reasons to think that it could affect 
European tendencies. 
 
Following Romer (1990), the importance of knowledge stocks (or a 
'standing on the shoulders of giants' effect) for knowledge production has 
been verified empirically (Furman, Porter and Stern, 2002; Zucker et al. 
2007). In order to capture this effect we use proxies of national 
knowledge stocks (available for all regions in the given country) 
corresponding to the two different knowledge types (PUBSTCKNi, 
PATSTCKNi). For technological knowledge we use national patent stock 
and the national publication stock for scientific knowledge. 
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Table 2. Variable description 

Variable Name Description Source 
PATi Number of patent applications to the 

European Patents office (EPO) by 
region of inventor (fractional counts) 

Eurostat NewCronos 
database 

PUBi Number of publications in scientific 
journals in the Thomson ISI database 
(search criteria: article, letter, review) 

RFK database (data 
processed by CWTS, 
Leiden University) 

GRDi Gross regional expenditures on R&D, in 
millions of Purchasing Power Standard 
(PPS) Euros, 1995 prices 

Eurostat NewCronos 
database 

FPKPi / 
PATKPWi 

Knowledge Potential – the directly 
available knowledge from a region’s 
partners. FKP is calculated for the 
binary FP network with accumulated 
R&D stock as knowledge levels. 
PATKPW is calculated for the weighted 
patent network with accumulated patent 
stocks as knowledge levels. 

Authors’ elaboration on 
FP5 administrative 
database, DG RTD, Dir A 
and OECD REGPAT 
database 

FPLDi / 
PATLDWi 

Local Density – the average number of 
links in a region’s neighborhood. FPLD 
is calculated for the binary FP network, 
PATLDW is calculated for the 
weighted patent network. 

Authors’ elaboration on 
FP5 administrative 
database, DG RTD, Dir A 
and OECD REGPAT 
database 

FPGEi / 
PATGEWi 

Global Embeddedness – the structure of 
the network behind a region’s 
immediate neighborhood. FPGE is 
calculated for the binary FP network, 
PATGEW is calculated for the 
weighted patent network. 

Authors’ elaboration on 
FP5 administrative 
database, DG RTD, Dir A 
and OECD REGPAT 
database 

FPENQi / 
FPENQWi 
PATENQi / 
PATENQWi 

Ego Network Quality – a 
comprehensive measure of network 
position. FPENQ is calculated for the 
binary FP network, FPENQW is 
calculated for the weighted FP network, 
PATENQ is calculated for the binary 
patent network and PATENQW is 
calculated for the weighted patent 
network. 

Authors’ elaboration on 
FP5 administrative 
database, DG RTD, Dir A 
and OECD REGPAT 
database 

FPDEGi / 
PATDEGi 

The number of a region’s direct partners 
in the network. FPDEG is calculated for 
the binary FP network and PATDEG is 
calculated for the binary patent 
network. 

Authors’ elaboration on 
FP5 administrative 
database, DG RTD, Dir A 
and OECD REGPAT 
database 

PATSTCKNi National patent stock corresponding to 
the given region 

Authors’ elaboration on 
Eurostat NewCronos 

PUBSTCKNi National publication stock 
corresponding to the given region 

Authors’ elaboration on 
Eurostat NewCronos 

AGGLi Index of agglomeration. Size-adjusted 
location quotient of employment in 
technology- and knowledge-intensive 
sectors: high and medium high 
technology manufacturing, high 
technology services, knowledge 
intensive market services, financial 
services, amenity services – health, 
education, recreation. For more details 
see Varga, Pontikakis and Chorafakis 
(2010) 

Authors elaboration of 
Eurostat NewCronos  
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Table 3. Variable descriptive statistics 
 

 
PUB PAT GRD PUBSTCKN PATSTCKN 

 
N 189 189 189 189 189 

 
Mean 2000,28 314,55 730,30 15533,05 30105,69 

 
Std.dev. 2576,39 519,94 1212,11 14929,01 36317,06 

 
Min 3 0,01 1 25 11 

 
Max 21050 3282,27 11314 41111 98481 

 

 
FPDEG FPENQ FPENQW FPGE FPLD FPKP 

N 189 189 189 189 189 189 

Mean 131,54 7 759 859 132 352 657 315 55,88 120 960 

Std.dev. 42,58 1 599 143 18 046 934 644 14,96 23 620 

Min 8 3 852 354 58 986 957 4,50 10 789 

Max 186 9 300 660 156 383 4 378 189 68,35 137 270 

 
PATDEG PATENQ PATENQW PATGEW PATLDW PATKPW 

N 189 189 189 189 189 189 

Mean 52,53 4 995 496 30 350 7 310 0,13 1140,23 

Std.dev. 36,16 1 544 242 11 459 6 422 0,07 2440,19 

Min 0 0 0 0 0 0 

Max 133 8 066 975 48 263 20 607 0,30 16263,33 

 
Patent stock is calculated according to the perpetual inventory method for 
the 1992–1998 period (see the details in Varga, Pontikakis and 
Chorafakis 2010) while publication stock is a simple sum of the count of 
publications in the period of 2000-2002. Variable description is in Table 
2, while descriptive statistics of the main variables are presented in Table 
3. 
 
 

4. Cooperation networks in patenting and publication 
 
The two types of knowledge flows between regions are captured by two 
different cooperation networks. The structure of technological knowledge 
flows is proxied by an interregional network of patent inventor 
cooperation while that of scientific knowledge flows is captured by a 
network of cooperation in the FP5 program. 
 
There are good reasons to expect that participations to the FP can be an 
appropriate proxy of the relational structure of interregional knowledge 
diffusion across Europe. The FPs were designed to support ‘pre-
competitive’, collaborative research with no national bias as to the types 
of technologies promoted and the distribution of funds. The 
precompetitive character of supported research ensured that Community 
funding did not clash with the competition principles of the Common 
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Market and did not function as a form of industrial subsidy; the 
collaborative character of research and the cost-sharing provisions were 
seen to guarantee the diffusion of technologies and the involvement of 
various types of actors from the whole technological knowledge creation 
spectrum, such as large and small firms, universities and public research 
institutes. One potential drawback of the FP as a data source is the fact 
that it is artificial; i.e. collaborating teams will not always coincide with 
naturally emerging networks of researchers. (Varga, Pontikakis and 
Chorafakis, 2010) 
 
With regards to technological knowledge flows, patent cooperation 
patterns can be traced out from a patent database. The REGPAT database 
of OECD was used for this purpose as a data source (OECD, 2009). This 
database contains information on patent applications filed to the 
European Patent Office (EPO), specifically information on the NUTS3 
level regions of the inventors of each patent (extracted on the basis of 
their addresses given on the patent documentation). Certain biases are 
possible also in this respect, but the nature of co-inventing gives a solid 
basis for these estimations of knowledge flows as it unlikely to find 
inventor names in a patent application who do not bear any inventive idea 
supplied to the inventor’s community. This is reassured by the relatively 
low number of inventors (2-3 on average) appearing in co-invented 
patents. In contrast to patent citations, tracing inventor cooperation 
provides insights to the flow of more tacit knowledge elements. 
 
In both cases (FP and patent networks), the regional information 
(address) of participants in FP projects and inventors of patents, together 
with the information of the date of cooperation (duration of FP programs 
and priority years for patents), allows us to construct a simple network 
where for each project (FP or patent) we assign the regions where the 
partners/inventors are resident. Then, this two-mode network is converted 
into a one-mode network where the nodes are regions and the links 
between the regions refer to the (FP or patent) cooperation between the 
regions. This conversion is done on the basis of the assumption that each 
partner/inventor listed for a given FP project/patent are linked to each 
other. For example, if three actors, A, B and C cooperated in one 
project/patent, and actors A and B belong to region 1 while actor C 
belongs to region 2, then we conclude that there is a link between regions 
1 and 2. Furthermore, the links in this interregional network is weighted, 
the link weights corresponding to the number of actor-actor contacts 
between the regions. In the previous example, we count two links 
between regions 1 and 2, one for the link between actors A and C and one 
for the link between actors B and C. This method is then iterated for each 
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patent/FP project and finally, the link weights between 1998 and 2002 are 
simply summed up to obtain the final weighted adjacency matrix of 
cooperation between European regions in the two dimensions. 
 
In the empirical analysis both the weighted and the binary versions of 
these networks are employed. In the binary networks we used the simple 
rule that a link is existent if there is at least one project/patent in which 
the two regions cooperated. In the weighted case we use normalized 
weights, obtained by simply dividing all raw weights by the largest 
weight in the network. 
 
It is interesting to look at some descriptive measures of these two 
networks as they show remarkable differences. The densities are 0.694 
for the FP network and 0.275 for the patent network. This means that in 
the FP network almost 70% of all possible ties are present whereas in the 
patent network only 27.5% exists. This shows that on average the regions 
in question are better connected through FP partnership programs than 
through patenting activity. 
 
The differences between the two networks are reflected by their degree 
distributions, depicted on Figure 3. The horizontal axis contains the 
possible degree values while  
 
 

 
Figure 3. Degree distribution of the FP and patent networks 

 
the vertical axis shows the frequencies of each degree value. The two 
figures show very different pictures. 
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The degree distribution is asymmetric in both cases, but the ‘direction’ of 
the asymmetry is the opposite. In the FP network the majority of the 
nodes have lots of links while there are only few regions (nodes) left with 
few links. The distribution clearly shows the source of the high value for 
the average degree calculated before. On the other hand, the co-patenting 
network exhibits an opposite direction of asymmetry: there are relatively 
few nodes with large number of links while the majority of the nodes 
have few links. This type of asymmetry is referred to as scale-free 
property of the network (Barabási and Albert 1999). 
 
The difference between the two networks reveal that in the case of the FP 
network more or less all regions are involved tightly in the cooperation 
and only the minority seem to be less connected. In the co-patenting 
network there are some dominant regions while the majority is less 
connected. It is important to note that the co-patenting network represents 
a structure, which has been developing bottom-up, upon the decisions of 
individual economic actors. On the other hand the FP network contains 
some top-down elements in its structure in the form of tender evaluation. 
 
 

5. Interregional knowledge network quality and research 
productivity of European regions: Empirical analysis 
 
In this section we present estimation results for equation (11). Knowledge 
production in scientific research (resulting in publications) and 
technological inventions (measured by patents) will be investigated for 
189 EU NUTS 2 regions. Cross-sectional econometric estimations for 
parameter β. will receive a particular attention as this parameter proxies 
interregional ego network effects on regional research productivity. 
Additional to core model variables we control for local knowledge flow 
impacts estimated by the parameter of the variable AGGL measuring 
agglomeration of knowledge intensive industries in the region11. We also 
test for spatial dependence in order to control for interregional knowledge 
                                                        
11 Following Varga, Pontikakis and Chorafakis (2010) the index is a size-adjusted (in the spirit of the 
index developed by Elison and Glaeser 1997) variation of the popular location quotient (LQ) measure 
and is calculated as:  
AGGLi = [(EMPKIi / EMPKIEU) / (EMPi / EMPEU)] / [1 - ∑ j (EMPKIi,j / EMPKIj,EU)]*[1 – (EMPi / 
EMPEU)],  
where EMPKIj and EMPKI are employment in knowledge intensive economic sector j and the total of 
knowledge intensive sectors, EMP is total employment and the subscripts i and EU stand for region 
and EU aggregate respectively. A significant and positive parameter of AGGL indicates a positive 
relation between knowledge output (publications or patents) and the agglomeration of knowledge 
intensive industries usually found instrumental in innovation such as high and medium technology 
manufacturing and business services. As common in KPF studies we interpret this result as a sign of 
influential knowledge flows from the local knowledge intensive industry to the production of new 
knowledge.  
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flows communicated by channels different from FP collaborations or co-
patenting. In this respect the significant parameter of the spatial lag 
variable is taken as a sign of the role of such interregional knowledge 
flows12. Due to the presence of the interaction term in equation (11) 
multicollinearity is a potential problem. We test for its presence by the 
Multicollinearity Condition Number (MCN)13.  
 

Table 4. Regression Results for Log (Patents) for 189 EU regions, 2002 
(N=189) 

Model (1) (2) (3) (4) (5) (6) (7) (8) 
 
Estimation 

 
OLS 

 
OLS 

 
OLS 

 
OLS 

 
OLS 

 
OLS 

 
OLS 

ML-  
Spatial Lag 
(NEIGH) 

Constant 
 
W_Log(PAT) 
 
Log(GRD(-2)) 
 
Log(GRD(-2))* PATKPW 
 
Log(GRD(-2))* PATLDW 
 
Log(GRD(-2))* PATGEW 
 
Log(GRD(-2))* PATENQW 
 
Log(PATSTCKN(-2)) 
 
Log(AGGL(-2)) 

-1.972*** 
(0.335) 

 
 

1.123*** 
(0.058) 

 
 
 
 
 
 

-1.643*** 
(0.353) 

 
 

1.044*** 
(0.064) 

0.223*** 
(0.086) 

-1.501*** 
(0.332) 

 
 

0.876*** 
(0.076) 

 
 

1.094*** 
(0.233) 

 

0.101 
(0.433) 

 
 

0.899*** 
(0.062) 

 
 

 
 

-0.504*** 
(0.076) 

-0.769** 
(0.375) 

 
 

0.602*** 
(0.106) 

 
 
 
 
 
 

0.456*** 
(0.080) 

 

-2.071*** 
(0.463) 

 
 

0.638*** 
(0.101) 

 
 
 
 
 
 

0.294*** 
(0.085) 

0.192*** 
(0.043) 

 
 

-0.837 
(0.593) 

 
 

0.497*** 
(0.108) 

 
 
 
 
 
 

0.257*** 
(0.084) 

0.171*** 
(0.043) 

1.195*** 
(0.372) 

-0.791 
(0.566) 

0.027*** 
(0.008) 

0.526*** 
(0.104) 

 
 
 
 
 
 

0.195** 
(0.082) 

0.114*** 
(0.043) 

1.149*** 
(0.355) 

R2-adj 
LIK 

0.67 0.68 0.70 0.73 0.72 0.74 0.76 0.77 
-269 

Multicollinearity Condition 
Number 
 
LM-Err 
Neigh 
INV1 
INV2 
 
LM-Lag 
Neigh 
INV1 
INV2 
 
LR-Lag 
 
LM-Err 
Neigh 
INV1 
INV2 

7.4 
 
 

30.46*** 
59.21*** 
16.60*** 

 
 

42.13*** 
48.06*** 
17.04*** 

 

8.8 
 
 

21.36*** 
34.31*** 
9.96*** 

 
 

35.01*** 
39.82*** 
13.01*** 

11.0 
 
 

14.19*** 
22.63*** 

6.58** 
 
 

28.92*** 
30.90*** 
9.92*** 

11.5 
 
 

8.56*** 
9.13*** 

2.75* 
 
 

20.07*** 
18.51*** 

3.75** 

15.7 
 
 

12.41*** 
12.19*** 

4.01** 
 
 

23.39*** 
21.25*** 
4.64*** 

19.5 
 
 

9.03*** 
5.38** 

1.69 
 
 

12.65*** 
10.94*** 

3.08* 
 

22.2 
 
 

5.67** 
2.33 
0.98 

 
 

12.65*** 
7.09*** 
1.23*** 

22.2 
 
 
 
 
 
 
 
 
 
 
 
 

12.349*** 
 

 
1.456 
0.313 
0364 

Notes: Estimated standard errors are in parentheses; spatial weights matrices are row-standardized: 
Neigh is neighborhood contiguity matrix; INV1 is inverse distance matrix; INV2 is inverse distance 
squared matrix; W_Log(PAT) is the spatially lagged dependent variable where W stands for the 
weights matrix INV2. *** indicates significance at p < 0.01; ** indicates significance at p < 0.05; * 
indicates p < 0.1.  

                                                        
12 The general expression for the spatial lag model is 

 y =  ρWy + xβ +ε, 

where y is an N by 1 vector of dependent observations, Wy is an N by 1 vector of lagged 

dependent observations, ρ is a spatial autoregressive parameter, x is an N by K matrix of 

exogenous explanatory variables, β is a K by 1 vector of respective coefficients, and ε is an N by 1 

vector of independent disturbance terms. Because  the spatially lagged dependent term is 

correlated with the errors and as such endogenous, the OLS estimator is biased and inconsistent. 

Instead of OLS, other estimation methods such as Maximum Likelihood, Instrumental Variables 

or General Methods of Moments must be applied to the spatial lag model (Anselin 1988).  
13 The value of MCN exceeding 30 suggests a potential problem of specification (Belsley, Kuh, and 

Welsch 1980).  
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Table 5. Robustness Specifications for Log (Patents) for 189 EU regions, 2002 
(N=189) 

Model (1) (2) (3) (4) 
 
Estimation 

ML-  
Spatial Lag 
(NEIGH) 

ML-  
Spatial Lag 
(NEIGH) 

ML-  
Spatial Lag 
(NEIGH) 

ML-  
Spatial Lag 
(NEIGH) 

Constant 
 
W_Log(PAT) 
 
Log(GRD(-2)) 
 
Log(GRD(-2))* PATENQ 
 
Log(GRD(-2))* PATDEGW 
 
Log(GRD(-2))* PATENQW 
 
Log(GRD(-2))* FPENQW 
 
Log(PATSTCKN(-2)) 
 
Log(PUBSTCKN(-2)) 
 
Log(AGGL(-2)) 
 

-0.862 
(0.585) 

0.028*** 
(0.008) 

0.528*** 
(0.121) 
0.171* 
(0.096) 

 
 
 
 
 
 

0.130*** 
(0.043) 

 
 

1.204*** 
(0.356) 

-1.140** 
(0.550) 

0.029*** 
(0.008) 

0.663*** 
(0.081) 

 
 

0.080 
(0.067) 

 
 
 
 

0.140*** 
(0.043) 

 
 

1.272*** 
(0.356) 

-0.539 
(0.695) 

0.031*** 
(0.008) 

0.493*** 
(0.105) 

 
 
 
 

0.242*** 
(0.080) 

 
 
 
 

0.071 
(0.065) 

1.281*** 
(0.357) 

-1.335** 
(0.525) 

0.029*** 
(0.007) 

0.621*** 
(0.098) 

 
 
 
 
 
 

0.113 
(0.094) 

0.140*** 
(0.043) 

 
 

1.277*** 
(0.356) 

R2-adj 
LIK 

0.77 
-270 

0.77 
-271 

0.76 
-272 

0.77 
-271 

Multicollinearity Condition Number 
 
LR-Lag 
 
LM-Err 
Neigh 
INV1 
INV2 

24.5 
 

13.40*** 
 
 

1.036 
0.231 
0.306 

17.2 
 

14.17*** 
 
 

1.173 
0.312 
0.447 

24.1 
 

16.45*** 
 
 

1.745 
0.479 
0.538 

19.6 
 

14.69*** 
 
 

1.443 
0.603 
0.537 

Notes: Estimated standard errors are in parentheses; spatial weights matrices are row-standardized: 
Neigh is neighborhood contiguity matrix; INV1 is inverse distance matrix; INV2 is inverse distance 
squared matrix; W_Log(PAT) is the spatially lagged dependent variable where W stands for the 
weights matrix INV2. *** indicates significance at p < 0.01; ** indicates significance at p < 0.05; * 
indicates p < 0.1.  

 
Table 4 presents the results on regional patenting. The highly significant 
and positive parameter of the research variable and the good regression fit 
in the second column are usual findings in the KPF literature on patenting. 
Models 2 to 4 test the separate impacts of the three dimensions of ENQ 
on research productivity. Impacts with binary and weighted patent 
networks were both estimated but since estimations for the latter network 
resulted in better fits to the data, the weighted network results are 
presented here.  Knowledge potential (PATKPW) and the intensity of 
collaborations (PATLDW) in the ego network are both positively related 
with research productivity as signaled by highly significant coefficients.  
 
The estimated parameter of global embeddedness (PATGEW) is 
significant but negative. It is the particular structure of the entire co-
patenting network that lies behind this somewhat surprising finding of 
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negative association between global knowledge access and regional R&D 
productivity. Data clearly tell us that European co-patenting network 
follows a strong core-periphery structure. High patenting regions in the 
core tend to collaborate with each other almost exclusively while low 
patenting regions in the periphery rarely extend their ties to the core14. 
Since most of the knowledge agglomerates in the core, additional 
knowledge that core regions can learn from the periphery is only 
marginal. On the other hand, peripheral regions may struggle from 
absorptive capacity deficits15. We decided to leave this result (and the one 
that echoes it for publications in Table 6) as it is. Our data do not allow 
more detailed analysis at this point. Information on specific technologies 
over a longer time frame will certainly provide a deeper knowledge about 
the role of global embeddedness in regional R&D productivity. With such 
data at hand, experiments with different weighting methods in GE 
(equation 3) could also become possible.  
 
Overall considered, it is clear from Table 4 that accounting for the impact 
of the three sub-indices (that measure the three dimensions of ego 
network quality) increases regression fit. Additionally, differences in the 
estimated values of β/	and	β. in Models 2 to 4 suggest that the three sub-
indices indeed capture different dimensions of ego network quality. ENQ 
enters the equation with a strongly significant and positive parameter in 
Model 5 resulting in an equation with R-squared 7.5 percent higher than 
without considering the effects of interregional networks on R&D 
productivity in Model 1. Repeating earlier results in the literature (e.g., 
Varga, Pontikakis an Chorafakis 2010) it is found that both national 
knowledge stock and agglomeration of knowledge intensive industries 
affect regional patenting positively. The positive and highly significant 
parameter of the spatially lagged dependent variable suggests that 
knowledge flows between neighboring regions are important sources of 
invention even after controlling for the impact of knowledge 
communicated through interregional co-patenting networks. 
  

                                                        
14 Note the similarity between the structure of the empirical patent network and that of the theoretical 
scalefree  network in Figure 2. Though a somewhat lesser extent but a similar pattern exists in the FP5 
network, which explains the comparable findings on GE impacts for publication research productivity 
(see Table 6 for further details).  
15 As a proximate measure of the relative size of knowledge accessed from outside the ego network we 
calculated the share of GE over ENQ for each region in the sample. Core regions yield extremely low 
values (e.g., for Ile de France is is below 1 percent) while on the perihpery the share of globally 
accessible knowledge above 90 percent is not an exception. This suggests that for several regions in the 
periphery globally available knowledge can be about nine times higher than the knowledge accessible 
from their individual networks. We also experimented with different methods to separate core and 
peripheral regions empirically. Estimation results (not reported here) suggest that the core and the 
perihpery indeed follow different patterns in utilizing global knowledge while generating new 
technologies.  
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Table 6. Regression Results for Log (Publications) for 189 EU regions, 2002 
(N=189) 

Model (1) (2) (3) (4) (5) (6) (7) (8) 
 
Estimation 

 
OLS 

 
OLS 

 
OLS 

 
OLS 

 
OLS 

 
OLS 

 
OLS 

ML-  
Spatial Lag 

(INV1) 
Constant 
 
W_Log(PUB) 
 
Log(GRD(-2)) 
 
Log(GRD(-2))* FPKP 
 
Log(GRD(-2))* FPLD 
 
Log(GRD(-2))* FPGE 
 
Log(GRD(-2))* FPENQ 
 
Log(PUBSTCKN(-2)) 
 
Log(AGGL(-2)) 

1.402*** 
(0.229) 

 
 

0.941*** 
(0.039) 

 
 
 
 
 
 

2.420*** 
(0.262) 

 
 

0.206* 
(0.120) 

0.612*** 
(0.096) 

 

2.659*** 
(0.285) 

 
 

0.300*** 
(0.105) 

 
 

0.490*** 
(0.076) 

2.554*** 
(0.280) 

 
 

0.794*** 
(0.043) 

 
 
 
 

-0.536*** 
(0.087) 

2.584*** 
(0.288) 

 
 

0.462*** 
(0.088) 

 
 
 
 
 
 

0.346*** 
(0.058) 

 
 

2.039*** 
(0.517) 

 
 

0.366*** 
(0.114) 

 
 
 
 
 
 

0.380*** 
(0.060) 
0.096** 
(0.045) 
0.049 

(0.267) 

1.980*** 
(0.402) 

 
 

0.377*** 
(0.095) 

 
 
 
 
 
 

0.377*** 
(0.059) 
0.096** 
(0.045) 

1.859*** 
(0.389) 

-0.004*** 
(0.001) 

0.459*** 
(0.095) 

 
 
 
 
 
 

0.334*** 
(0.058) 

0.140*** 
(0.045) 

R2-adj 
LIK 

0.75 0.80 0.80 0.79 0.79 0.79 0.80 0.81 
-209 

Multicollinearity Condition 
Number 
 
LM-Err 
Neigh 
INV1 
INV2 
 
LM-Lag 
Neigh 
INV1 
INV2 
 
LR-Lag 
 
LM-Err 
Neigh 
INV1 
INV2 

 
7.4 

 
 

0.123 
1.213 
0.172 

 
 

11.008*** 
12.988*** 

5.106** 

 
27.5 

 
 

0.118 
1.078 
0.253 

 
 

7.045*** 
6.348** 

1.407 

 
23.6 

 
 

0.065 
0.394 
0.085 

 
 

4.944** 
4.895** 

1.288 
 
 

 
10.5 

 
 

0.128 
0.206 
1.044 

 
 

6.330** 
1.528 

6.321** 

 
19.1 

 
 

0.117 
0.359 
0.031 

 
 

4.461** 
5.506** 

1.977 
 

 
27.9 

 
 

0.277 
1.144 
0.210 

 
 

8.139*** 
10.833*** 

2.820* 

 
23.3 

 
 

0.261 
1.070 
0.201 

 
 

8.164*** 
9.704*** 

2..523 

 
23.3 

 
 
 
 
 
 
 
 
 
 
 

10.50*** 
 
 

0.001 
0.002 
0.267 

Notes: Estimated standard errors are in parentheses; spatial weights matrices are row-standardized: 
Neigh is neighborhood contiguity matrix; INV1 is inverse distance matrix; INV2 is inverse distance 
squared matrix; W_Log(PAT) is the spatially lagged dependent variable where W stands for the 
weights matrix INV2. *** indicates significance at p < 0.01; ** indicates significance at p < 0.05; * 
indicates p < 0.1.  

 
Table 5 shows some robustness results. Model 1 is exhibited to 
demonstrate the slightly weaker performance of ENQ with binary 
connections. The message of Model 2 is that R&D productivity in 
patenting is not associated with the pure number of interregional 
connections though this aspect of an ego network is frequently applied in 
spatial studies. Instead, as detailed above, ENQ and its dimensions are the 
network features that are significantly related to the productivity of 
research.  The last two columns demonstrate that patenting follows a 
different path than scientific publications: publication stocks (measuring 
national development in scientific research) are not a substitute for patent 
stocks (i.e., national technological knowledge) and ENQ of FP 5 research 
networks is not an alternative of ENQ in co-invention.  
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Table 7. Robustness Specifications for Log (Publications) for 189 EU regions, 
2002, (N=189) 

Model (1) (2) (3) (4) 
 
Estimation 

ML-  
Spatial Lag 

(INV1) 

ML-  
Spatial Lag 

(INV1) 

 
OLS 

ML-  
Spatial Lag 

(INV1) 
Constant 
 
W_Log(PUB) 
 
Log(GRD(-2)) 
 
Log(GRD(-2))* FPENQW 
 
Log(GRD(-2))* FPDEGW 
 
Log(GRD(-2))* FPENQ 
 
Log(GRD(-2))* PATENQ 
 
Log(PUBSTCKN(-2)) 
 
Log(PATSTCKN(-2)) 
 

1.199*** 
(0.394) 

-0.005*** 
(0.001) 

0.835*** 
(0.063) 
0.182** 
(0.071) 

 
 
 
 
 
 

0085* 
(0.048) 

1.167*** 
(0.404) 

-0.005*** 
(0.001) 

0.959*** 
(0.055) 

 
 

-0.009 
(0.077) 

 
 
 
 

0.096* 
(0.049) 

 

2.443*** 
(0.108) 

 
 

0.598*** 
(0.108) 

 
 
 
 

0.338*** 
(0.057) 

 
 
 
 

-0.103** 
(0.049) 

1.110** 
(0.496) 

-0.005*** 
(0.001) 

0.973*** 
(0.092) 

 
 
 
 
 
 

-0.017 
(0.078) 
0.098** 
(0.049) 

R2-adj 
LIK 

0.78 
-221 

0.78 
-224 

0.79 0.78 
-224 

Multicollinearity Condition Number 
 
LM-Err 
Neigh 
INV1 
INV2 
 
LM-Lag 
Neigh 
INV1 
INV2 
 
LR-Lag 
 
LM-Err 
Neigh 
INV1 
INV2 

 
20.0 

 
 
 
 
 
 
 
 
 
 
 

19.08*** 
 
 

0.010 
0.019 
0.321 

 
18.6 

 
 
 
 
 
 
 
 
 
 
 

17.94*** 
 
 

0.254 
0.154 
0.103 

 
26.0 

 
 

0.001 
0.001 
0.001 

 
 

2.682 
2.590 
0.978 

 
 

 
24.1 

 
 
 
 
 
 
 
 
 
 
 

14.72*** 
 
 

0.251 
0.142 
0.084 

Notes: Estimated standard errors are in parentheses; spatial weights matrices are row-standardized: 
Neigh is neighborhood contiguity matrix; INV1 is inverse distance matrix; INV2 is inverse distance 
squared matrix; W_Log(PAT) is the spatially lagged dependent variable where W stands for the 
weights matrix INV2. *** indicates significance at p < 0.01; ** indicates significance at p < 0.05; * 
indicates p < 0.1.  

 
Table 6 and 7 exhibit empirical results for regional R&D productivity in 
scientific publications. Models 1 to 5 in Table 6 follow the patterns 
already discussed for patent production: components of ENQ (this time 
with binary network data) enter the equation with significant and varying 
parameters, and the parameter of ENQ is itself positive and significant 
while regression fit increases. National level scientific knowledge relates 
positively to publication output, but regional agglomeration of 
technology-intensive industries has no significant effect on the 
production of new scientific knowledge (Models 6 and 7).  This finding 
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together with the significant network quality effect suggests that success 
in scientific research is more related to international and national 
embeddeddness than to industrial agglomeration. This result echoes what 
is a frequent observation: high quality research universities are not 
necessarily located in large cities. They can be equally successful in 
scientific knowledge production in smaller but well-connected 
geographical areas (e.g., Varga 2000). The significant but negative 
coefficient of the spatially lagged dependent variable in Model 8 
underlines what is just observed about the role of agglomeration. Regions 
with high levels of scientific publication do not necessarily locate in 
spatial proximity, but they tend to scatter geographically. This latter 
finding underlines what is suggested by Models 6 and 7 in Table 6. 
Knowledge inputs to scientific research can successfully be transported 
over large distances due perhaps to the presence of institutional and 
cognitive proximities (Boschma 2005).    
 
The robustness results in Table 7 are summarized as follows. The 
presence of network connections seems to be more relevant for R&D 
productivity in scientific publications than the frequency of interactions 
as suggested by the lower fit and a less significant ENQ parameter in 
Model 1 (using weighted network data). Similar to what is found for 
patenting, the number of collaborations does not affect research 
productivity. This finding suggests again that research productivity is 
related to several additional network features captured by the more 
complex ENQ variable and not to the pure number of connections, which 
is a commonly applied variable in spatial network studies. Models 3 and 
4 again show that regional publication and patenting are governed by 
different principles. National technological knowledge does not 
necessarily go hand in hand with outstanding regional scientific 
production (Model 3). A similar message is communicated by Model 4: 
the quality of technological knowledge accessed through co-patenting 
networks is not related to research productivity in publications. Instead, 
R&D productivity of scientific knowledge creation relies on the quality 
of research collaboration networks like the ones financed by the EU 
Framework Programs.  
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6. Summary 
 
 
In this paper we contributed to the emerging literature on the role of 
interregional knowledge flows in the regional production of new 
(scientific and technological) knowledge. An especially promising tool of 
research in this area is network analysis, which is applied in our study as 
well.  
 
To structure the problem of interregional knowledge network effects on 
research productivity at the regional level we directed attention to the 
value of knowledge that can be accessed from a particular network. To 
measure such knowledge value we introduced the index of ego network 
quality (ENQ). ENQ summarizes three features of networks: the 
knowledge already accumulated by immediate network partners 
(knowledge potential – KP), the frequency of collaborations among 
immediate network partners (local density – LD) and the region’s 
embeddeddness in the entire knowledge network (global embeddeddness 
– GE).  
 
A systematic spatial econometric analysis were then carried out with 
European regional data on the role of ENQ in research addressing the 
development of technological inventions (measured by patents) on the 
one hand and scientific publications on the other. We found that the 
quality of interregional networks in both areas of knowledge production 
is indeed a significant contributor to R&D productivity. We also found 
that the pure number of collaborations, which is the most frequently used 
variable in spatial network studies is not a suitable proxy of interregional 
network effects in R&D productivity contrary to ENQ. Our results show 
that a more comprehensive approach taking into account several local and 
global features of the network surrounding the given region provides 
better insights into the network effects in regional knowledge production.  
 
Our research has a potential relevance for regional development policy as 
well. Parallel with the worldwide emergence of interest in place-based 
local development, beginning in 2014 the new European Cohesion Policy 
will adopt “smart specialization” as a promising alternative to 
conventional economic development policies supported by the EU for 
decades (Barca 2009, McCann and Ortega-Argilés 2011). One of the core 
elements of the smart specialization idea is local development supported 
by the transfer of knowledge originated in more advanced regions (Foray, 
David and Hall 2009). However, empirical evidence on the role of 
interregional knowledge networks on regional development is still 
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limited. The application of the concept of the quality of interregional 
knowledge networks measured by ENQ may open the possibility of a 
more systematic research in this area.  
 
We consider this paper as a first step into the research field of network 
quality impacts on regional knowledge production. Further efforts with 
more detailed data in the dimensions of time, scientific and technological 
areas and geography will potentially extend our knowledge in this field.  
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Appendix: Some special cases of ENQ 
 
 
A.1. ENQ without distance weights 
Consider the situation in which distance weights are not considered, i.e.  ! = 1 for all ", and knowledge levels are identical across nodes, that is, 
we can use �� = 1  for all � , therefore (as mentioned before) ��!� =∑ 	�

,O��8! = �!� . This way the previous formula collapses to 

 

��#� = P&!� − &!-.�
Q-.

!8.
= &5-.�  

 
As $5-.�  is the largest subgraph possible, containing all nodes, in this 
very special case ��#�  is simply the number of links in the network, 
irrespective of the node in question. 
 
A.2. ENQ without knowledge weights 
If knowledge weights are not used but distance weights are in effect, we 
have the following formula for ENQ: 
 

��#� = P ! R∑ ∑ 	
SS,O�T8!
,O��8! 2 +P P 	
SS,O�T8!
,O��8!-.
V

Q-.

!8.
 

 
The first term in the parenthesis gives the number of links between nodes 
at distance d, whereas the second term counts the number of links 
connecting distance " with distance " − 1. If we expand the expression 
in the parenthesis with the term ∑ ∑ 	
SS,O�T8!W.
,O��8!  (which counts the 

links between nodes at distance " and " + 1), we obtain a number which 
gives the sum of degrees of nodes at distance ". After this expansion we 
can write 
 

�X$Y� = P ! R∑ ∑ 	
SS
,O��8!2 V
Q-.

!8.
= 12P !P ���

,O��8!

Q-.

!8.
 

 
This last measure is nothing else than the distance-weighted sum of 
degrees in the network. On the other hand, this last expression bears a 
close resemblance to the eigenvector centrality, which also reflects a 
distance-weighted sum of degrees in a network, although it uses a 
recursive definition with exponential weights leading to an eigenvector 



36 

 

problem. This means that our ENQ index, when knowledge levels are 
homogenous, reflects similar properties to eigenvector centrality, which 
is a comprehensive measure of network position taking into account the 
whole structure around a given node from its immediate neighborhood to 
farther parts of the network. 
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